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Abstract

We examine the electromagnetic scattering from an arbitrarily shaped open cavity embed-

ded in a perfectly conducting, infinite ground plane. The cavity is filled with an arbitrary linear,

isotropic, homogeneous, lossy material. The field everywhere in the cavity interior and above the

ground plane are expressed in terms of the tangential fields on the cavity surface and aperture. We

develop a coupled set of three integral equations to determine the tangential electromagnetic fields

on the aperture and cavity surface. The integral equations are based on fundamental mathematical

laws obeyed by the fields rather than on the usual surface or volume equivalence principles. The

unknown functions are the tangential electric and magnetic fields on the cavity aperture, and the

tangential magnetic field on the cavity surface. The support of the unknown tangential fields is

finite.

We design a moment-method based algorithm to find an approximate solution to the integral

equations for plane wave illumination, and implement it on a digital computer. The algorithm is

specialized for the case of axisymmetric cavities, and uses the same basis functions as are used in

traditional body-of-revolution scattering codes. The unknown tangential fields are expanded using

piecewise-linear functions in the elevation plane and complex exponentials in the azimuth plane.

Orthogonality of the complex exponentials is exploited to reduce the size of the moment method

matrix.

The algorithm yields a well-conditioned numerical solution for the tangential fields. The

tangential fields obey the edge condition at the aperture rim. The integral equations are uniquely

solvable at frequencies where other integral equation-based techniques admit spurious solutions.

Radar cross section calculations are compared to experimental measurements of full-scale physical

models. Results show that an open cavity can serve as an effective RCS enhancement device.

xi



Electromagnetic Scattering from a Cavity in a Ground Plane: Theory and Experiment

I. Introduction

1.1 Motivation

Methods of radar cross section (RCS) reduction have been extensively investigated over

the past several decades and have reached a state of maturity sufficient to find many practical

applications. On the other hand methods of RCS enhancement have received only limited attention.

An example of RCS enhancement is the use of a string of comer reflectors to locate runways

by approaching aircraft in bad weather. A similar example, albeit in the optical regime, is the

placement of cat's eye lane demarkers on highways to help motorists at night. Such aids represent

"brute force" approaches employing already existing technology, and are not constrained by other

factors such as the requirement to minimize size or weight. As such, they do not constitute the

product of a serious, comprehensive study of RCS enhancement techniques. Hence it would appear

that an investigation of RCS enhancement techniques is warranted. Before one begins to undertake

such studies, it is worthwhile to identify a few practical applications to justify any such efforts.

RPV Tracking: Remotely piloted vehicles (RPVs) are an inexpensive means of gathering

intelligence data and are routinely used in tactical scenarios. It goes without saying that

the user must maintain constant contact with the RPV. Since the operation is supposed to

be clandestine, the use of tracking beacons is ill-advised. To enhance the ability to track

the RPV by radar, RCS enhancement without compromising flying qualities appears attrac-

tive. Comer reflectors or Luneberg lenses are devices that can enhance RPV RCS, but such

devices invariably increase the drag of an otherwise streamlined air vehicle. The answer

obviously lies in working from the inside with suitable coupling to the outside by means of

RF windows which blend smoothly with the skin of the RPV.

" UAV Decoys: Unmanned air vehicles (UAVs) can serve as an inexpensive decoy. Such de-

coys might be launched in large numbers to saturate enemy air defenses, thus increasing the

survivability of friendly aircraft. A small, inexpensive UAV would typically have a smaller
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RCS than that of a fighter-size aircraft, thereby providing an adversary with a way to dis-

criminate between the two. An effective decoy should mimic the strike aircraft in as many

ways as possible, so we desire a method to increase the decoy's RCS to the level of the strike

aircraft. In this way, the effectiveness of a UAV decoy could be considerably increased.

" Camouflage of Stealthy Aircraft: As low-RCS aircraft enter the inventory, the need to con-

trollably increase their RCS has become evident. In many cases, a stealthy aircraft's low RCS

might impair its capability, especially in a peacetime training environment. For instance, air

traffic control radars must be able to detect low-RCS aircraft in their areas of responsibil-

ity to ensure air safety; and reliance on a transponder may introduce safety-of-flight issues.

Additionally, one may wish to protect knowledge of a low-RCS aircraft's true radar signa-

ture, so the ability to increase it in a controlled manner may prevent the compromise of vital

operational capabilities.

" Identification: Current non-cooperative target recognition (NCTR) research efforts exploit

target RCS signatures, so it is conceivable that controllable, distinctive RCS enhancement

could be used as a means to identify friendly aircraft. Currently, friendly aircraft are nor-

mally identified via Identification Friend or Foe (IFF) transponders (which require an air-

craft to broadcast its presence using coded signals over specific frequencies) or through

non-cooperative techniques that fail at some aspect angles. An RCS enhancement device

may create an RCS signature that is distinctive enough to make an unerring friendly identi-

fication at all aspect angles possible.

Several techniques have been considered to accomplish effective RCS enhancement. Imped-

ance loading has been investigated to control RCS [55], although most research in impedance

loading techniques has been focused on RCS reduction and, furthermore, the technique has been

found to be effective only over fairly narrow bandwidths. RCS enhancement has traditionally been

accomplished using comer reflectors, bicones, or dielectric lenses [12, Chap 8]. These devices

are effective RCS enhancement devices because they scatter strongly over large bandwidths, broad

aspect angles, and varied polarizations. However, when applied to an air vehicle, they exhibit the

following drawbacks:

" Decreased aerodynamic performance through increased drag,

" Additional parasitic weight, and

2



e Lack of in-flight switching capability

It would be useful if an alternative method of RCS enhancement could be found to mitigate

these drawbacks, while effectively increasing RCS.

" .. ii i- .' .

Figure 1 An open cavity embedded in the wing of a UAV

1.1.1 A Viable Candidate for RCS Enhancement. A potentially viable candidate design

for an RCS enhancement device consists of one or more open cavities embedded behind the air

vehicle's exterior skin. Figure 1 shows a possible location of an open cavity on an unmanned

air vehicle (UAV) - on the upper surface of its wing. Here, the open cavity would provide RCS

enhancement for aspects above the waterline of the UAV; RCS enhancement below the waterline

could be accomplished by a similar open cavity mounted on the wing's underside. Unlike an ex-

ternal radar reflector, an open cavity would not extend into the airstream and create additional

aerodynamic drag. The additional weight to the air vehicle is negligible. An open cavity could

conceivably be turned on or off by electrically controlling the conductivity of a membrane cov-

ering its aperture thus providing an in-flight switching capability ( [52,66]). 1 Additionally, it is

anticipated that an open cavity would be an effective RCS enhancement device, scattering strongly

'In the "off" state, the membrane's conductivity would be very high, blending the aperture of the open cavity into
the conducting skin of the aircraft and effectively isolating the open cavity from the incident field. In this state, the open
cavity would not affect the normal RCS of the air vehicle. In the "on" state, the membrane's conductivity would be very
low, and the membrane would be nearly transparent to the incident field. In this state, the open cavity would scatter
strongly, overriding the natural RCS of the aircraft.

3



over a large bandwidth, broad range of aspect angles, and arbitrary polarization; it is the goal of

this dissertation to characterize its scattering characteristics.

1.1.2 Open Cavity RCS Enhancement Device. For the purposes of this dissertation, we

define an open cavity RCS enhancement device (OCRED) to consist of an open box or enclosure

whose mouth or aperture is set in a perfectly conducting plane. A "shoebox" shaped example of

this geometry is shown in Figure 3(a). The interior of the open cavity couples to the half space

above via an opening ("aperture") in the ground plane. The ground plane is perfectly conducting,

as are the walls of the open cavity, and the interior of the open cavity is filled with a homogeneous,

isotropic, linear dielectric material. The half-space above the ground plane is a free-space region.

The scattering properties of an OCRED can be studied using analytical methods complemented by

experimental measurements. There is a woeful lack of experimental data in the open literature, and

each analytical/computational method in common use is limited in some way.

In the context of this document, the OCRED is a canonical problem of the more complex

situation in the real world. For example, in the real world the OCRED would be mounted on a

finite-sized air vehicle rather than in an infinite ground plane, and the cavity walls and surrounding

air vehicle skin may not be perfectly conducting. We will deal here with the idealized, canonical

problem as a means to gain insight into the real world one.

1.1.2.1 Analytical Predictions. Predicting the scattering characteristics of the OC-

RED is a challenging problem in electromagnetic theory, especially in the resonance regime. In the

low-frequency and high-frequency limits, certain approximations can be made to make the prob-

lem more tractable, but when the dimensions of the OCRED are on the order of a wavelength, these

approximations generally fail. Most current general-purpose RCS prediction codes are based on

either high-frequency asymptotic methods, or the method of moments. High-frequency asymptotic

methods include physical optics (PO), the physical theory of diffraction (PTD), geometrical optics

(GO), and the uniform theory of diffraction (UTD), and view scattering as a phenomenon depen-

dent only on the incident field and local geometry. But in a cavity, the scattering is a complex

function of the interactions between the aperture, the cavity interior, and the ground plane. For

this reason, high-frequency asymptotic methods do not predict OCRED scattering accurately. The

conventional, general-purpose integral equation approach has the inherent capability to predict OC-

4



RED scattering, but the need to model the equivalent currents on the infinite ground plane makes

it impractical. (An important variation, the generalized network formulation, will be discussed in

Chapter II.)

1.1.2.2 Experimental Measurements. Building and measuring an OCRED model

has the advantage of providing high-quality data and is easily within the capabilities of today's

fabrication technology and RCS measurement ranges. Unfortunately, it is not cost-effective to

build and measure many such models with the aim of obtaining insight into the viability or design

of an effective OCRED, and there is a surprising lack of measured data in the open literature.

1.2 Organization

This dissertation represents an attempt to understand the electromagnetic scattering charac-

teristics of the OCRED geometry. In Chapter II, we summarize the pertinent related work that has

appeared in the open literature. In Chapter III, we develop a new set of integral equations to predict

the scattering from an arbitrary OCRED geometry. In Chapter IV, we develop an algorithm to find

an approximate solution to these integral equations for the case of axially symmetric (body of rev-

olution) geometries. In Chapter V we present the results of implementing the numerical algorithm

and making experimental measurements of several physical models. In Chapter VI, we conclude

the dissertation with a brief summary of the findings and recommendations for further research.
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II. Related Work

The OCRED geometry consists of two canonical geometries: an open cavity and an aperture in a

ground plane. Each of these forms has been investigated extensively, but the composite problem

has received far less attention.

2.1 Open Cavities

A large body of work exists dealing with the problem of scattering from an open, perfectly

conducting cavity in free space [17,27, 38, 58]. Most of this work makes use of Harrington and

Mautz' generalized network formulation [23]. This method partitions the problem into an exterior

problem and an interior problem, as shown in Figure 2. Each (simpler) problem is treated indi-

vidually, and the composite problem is solved by enforcing tangential field continuity across the

aperture. If there are no sources present, the electric field for the interior problem will satisfy the

homogeneous vector wave equation and the perfect electrical conductor (PEG) boundary condi-

tion. For an arbitrarily shaped interior problem, it can be shown [11, 68] that the interior fields are

not uniquely determinable at a countably infinite set of discrete, resonant frequencies. At these

frequencies, the generalized network formulation fails to provide a unique solution for the fields in

the cavity interior and surface [35]. This is a very serious limitation, especially for cavities of arbi-

trary shape, since it is very difficult to find the resonant frequencies. Only for a limited number of

simple geometries (such as rectangular boxes, spheres, and circular cylinders) one can analytically

determine the resonant frequencies. It is therefore not apparent whether the generalized network

Original Problem Exterior Problem Interior Problem

Figure 2 Partitioning of an open cavity problem into an exterior problem and an interior prob-
lem, showing equivalent magnetic current M.
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formulation will break down for a particular frequency of interest. The resonance phenomenon ex-

hibited by the interior problem does not mean that the OCRED fields are not uniquely solvable at

all frequencies. The source-free interior problem artificially enforces a vanishing tangential electric

field across the aperture, whereas the complete OCRED problem implies no such requirement. It is

this "spurious resonance" that motivates us to find an alternate method to the generalized network

formulation technique.

A related problem is that of scattering by perfectly conducting finite obstacles in free space.

This problem is typically solved using the equivalence principle [21] which involves determining

equivalent electric currents on the boundary, satisfying an integral equation. Typically, the integral

equation is either the electric field integral equation (EFIE) or the magnetic field integral equation

(MFIE) [40]. Neither formulation is uniquely solvable at interior resonant frequencies [57]. The

root of the problem is the failure of the EFIE and MFIE to enforce proper boundary conditions

on the scatterer at resonance [51, 68]. This results in a nontrivial solution to the homogeneous

(source-free) problem, which contaminates the true solution. More complicated formulations have

been proposed to "fix" the EFIE and MFIE [42,43,67,68]. Unfortunately, none of these approaches

apply to the interior problem because the resonances of the interior cavity are real.

Despite its problems with "spurious resonances," the generalized network formulation has

been successfully used by many investigators (see, for example, [63]). In all these cases, particular

care is taken to stay away from frequencies corresponding to known internal resonances.

2.1.1 Open Spherical Shells. A particular canonical open cavity which can be ana-

lyzed without resorting to the generalized network formulation is the open, infinitesimally thin,

conducting spherical shell [5,56, 58,69]. Because this geometry is separable, it can be analyzed

by expanding the exterior and interior fields using spherical vector wave functions [47]. The re-

sulting infinite series is typically truncated, and a linear system of equations solved to determine

the unknown coefficients. Unfortunately, this technique applies only to geometries natural to the

spherical coordinate system.
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2.2 Apertures in a Ground Plane

Scattering by and transmission through an arbitrary aperture in a ground plane has been ex-

tensively investigated. An excellent review of techniques developed through the late 1970s can

be found in Butler et al [8]. More recently, investigators have explored other techniques. Lueb-

bers [39] uses the finite-difference time domain (FDTD) method to find the scattering from an infi-

nite slot in a thick ground plane. This method can be extended to three-dimensional apertures, but

the geometry must be approximated by a rectangular grid. The finite element method (FEM) has

become popular [16,26,28,29], but requires modeling the interior of the computational domain

and matching the solution to a boundary integral equation that implicitly contains the radiation

condition. Several authors [10,13] have considered the problem of electrically small apertures and

expressed the solution as a power series in frequency. When the frequency is sufficiently small the

first term of the series yields reasonably accurate results.

2.3 Open Cavity in a Ground Plane

The composite OCRED problem represents a combination of an open cavity and an aperture

in a ground plane. The analogous two-dimensional problem of scattering by an infinite trough in a

ground plane has been treated by several investigators [3,14,20,24,25]. The approaches which have

been taken can be broadly categorized as low-frequency, high-frequency, and resonant-frequency

techniques, based on the assumed value of kd where k is the wavenumber and d is a characteristic

linear dimension of the cavity or aperture.

2.3.1 Low-Frequency Techniques, kd < 1. Hansen and Yaghjian [20] examine the

two-dimensional trough in a ground plane, using a truncated power series in kd. This represents a

perturbation of the corresponding electrostatic problem. Kempel and Senior [32] model an OCRED

as an impedance disk on a ground plane. This technique can only be applied, however, to cavity

geometries that can be modeled as sections of waveguides. Since the size of the cavity is assumed

to be small compared to the wavelength, low-frequency techniques are primarily useful for finding

the scattering from imperfections such as cracks, gaps, and rivet-holes in the skins of aircraft. For

larger cavities, low-frequency techniques are not useful.
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2.3.2 High-Frequency Techniques, kd > 1. Nearly all high frequency techniques may

be grouped under the term "ray" techniques, because they take the viewpoint that electromag-

netic waves propagate like rays of optical light. Ray techniques are valid if scattering is a local

phenomenon and physically distant portions of the geometry do not significantly interact. Many

investigators have used ray techniques and in several instances merged them with modal methods

when the cavity has properties of a waveguide [7, 9, 15, 36, 37,49]. High-frequency techniques

have application in the prediction of scattering from jet engine inlet ducts. When the cavity is not

electrically large, interactions between the aperture and cavity termination become important and

the accuracy of high-frequency techniques is questionable.

2.3.3 Resonant-Frequency Techniques, kd = 0(1). Resonant-frequency techniques

employ the finite element, finite-difference time domain, modal, or integral equation method, or

some hybridization of them. These are discussed below.

Hybrid Finite Element Method. The finite element method (FEM) has been combined with

the boundary integral equation method to solve OCRED-like problems [3]. It has been used to

model arbitrary geometries [27]. However, "penalty functions" [53] must be introduced into the

three-dimensional FEM variational equations to suppress spurious solutions. Sun et al show that

these spurious solutions are caused by an incorrect component of the solution associated with the

static electric potential (i.e., the null space of the curl operator), rather than "the nonsolenoidal

nature of finite-element-approximation procedures" [60]. Webb [64] uses special basis functions

to model field behavior at edges, increasing the complexity of the method.

Finite-Difference Time Domain (FDTD) Method. The FDTD method has been employed to

predict the scattering from open cavities. Penney and Luebbers [50] use FDTD to analyze cavity-

backed antennas, while Lee et al [34] apply it to find the scattering from a jet engine inlet duct.

A single FDTD simulation can generate broadband scattering data, but only for a single angle

of incidence. Additionally, FDTD meshes are restricted to be rectangular, and special absorbing

boundary conditions must be used to approximate the radiation condition for the scattered fields.

Modal Methods. For rectangular geometries, the fields in the OCRED cavity can be ex-

panded in waveguide modes [4]. Large field magnitudes in the aperture have been observed when

the aperture is electrically small and the frequency is near a resonant frequency for the interior
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problem [35]. Modal methods are restricted to the narrow class of geometries for which analytical

expressions for the modes are available.

Integral Equation Methods. Most integral equation approaches to the OCRED scattering

problem employ the generalized network formulation, as described in Section 2.1, and are not

uniquely solvable at some discrete frequencies. An interesting and very promising boundary inte-

gral equation approach was recently proposed by Asvestas & Kleinman [2]. Their method requires

solving for surface currents on the open cavity surface, and the authors claim that the integral

equations are uniquely solvable at all frequencies, but provide no substantiation. Additionally, the

formulation only applies to empty cavities and the theory must be extended to account for material-

filled cavities. Recently, the method was extended to handle a dyadic impedance boundary condi-

tion imposed on the cavity surface, though the ground plane is still perfectly conducting [1].

To select an appropriate technique to model OCRED scattering, we look at three desirable

attributes. First, the technique must be valid for cavities that are neither electrically large nor elec-

trically small. Second, the technique should not suffer from the problem of spurious resonances.

Third, the technique should minimize the computational domain so that computational resources

are conserved. The technique that best satisfies these three attributes is the Asvestas boundary

integral equation technique, which will be further explored in the remainder of this dissertation.
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III. Theory

In this chapter, we will cast the problem of scattering from an open cavity embedded in a perfectly

conducting ground plane in terms of integral equations. We shall first define the specific geometry

for the field components. Following the approach of Asvestas and Kleinman [2], we shall then

obtain the final integral equations.

In Section 3.1, we introduce the OCRED geometry. In Section 3.2, we define the electro-

magnetic fields for the OCRED problem, along with the partial differential equations and boundary

conditions they satisfy. In Section 3.3, we introduce several scalar and dyadic functions and de-

fine their properties. In Section 3.4, we develop radiation integrals that define the electromagnetic

fields everywhere in the OCRED domain in terms of the tangential field components on the cavity

surface and aperture. Finally, in Section 3.5, we transform the radiation integrals into a set of three

coupled surface integral equations involving these tangential field components alone.

3.1 Geometry

The general OCRED geometry is shown in Figure 3. The entire xy-plane is partitioned into

,t/ , Df ---- 6o, P~O

xw2infty PE I i~ii:.... ..

(a) A shoebox-shaped OCRED in a finite ground (b) Cross-sectional view of an OCRED.
plane. For an infinite ground plane, let w -- cc.

Figure 3 The geometry of an OCRED. Figure 3(a) shows a three-dimensional representation.
Figure 3(b) shows a two-dimensional view, with regions and surfaces defined.

two regions: a bounded, simply-connected region, a, and its complement in the xy-plane, oc. The

cavity volume, D, is bounded by the closed regular surface OD, which is composed of a and the

open regular surface, S. In the following development, we shall assume the following:

The cavity surface S and the aperture complement or are perfect electric conductors.
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" The boundary of or (i.e. the rim of the aperture), ac, is a closed, bounded, piecewise smooth
curve in the xy-plane.

" The cavity surface S does not extend into the upper half space, and intersects the xy-plane
only at o.

" The unit normal vector, fi, is defined almost everywhere (except for a finite number of edges,
comers, or tips) on S and is oriented away from D.

" The cavity volume D is filled with a homogeneous, isotropic, linear material characterized
by its permittivity El and permeability pi, one or both of which may be complex.

" The upper half space is filled with free space.

Before proceeding further, we should clarify that the symbol F will be used to denote either

the position vector x* + ykr + z or the corresponding point (x, y, z). The distinction will be clear

from the context in which r is used.

zr

~y

Figure 4 Position vector, F, and its image, ri

In what follows we shall make extensive use of image theory. We define the image of F'

with respect to the xy-plane, as Fij = x: + y" - A = F*. Ii, where 1i = xR + k r - H is the

image dyadic. Similarly for a field vector k (F) = Ax (F)R + Ay (f)k + Az (f)i, we have the image

Ait) = Ax (F)R + Ay(i) k - A,(F) = .A(F) -Ij. To summarize, the image of any vector, be it a

position vector or a field vector function, is simply that vector dotted into the image dyadic.

Image surfaces and image volumes are defined analogously to image vectors: the image of

the cavity surface S is denoted Si and defined as Si = {rF: fi E S}, while the image of the cavity

12



volume D is denoted Di and is defined as Di = {f : fi E D}, The portion of the upper half space

less those points that are not contained in either volume Di or surface Si is denoted Df.

3.2 Fields

We restrict all impressed sources to exist only in Df so that the total fields in D and Di

satisfy the following Maxwell's equations for homogeneous, linear, isotropic, source-free media

(et time convention) [21]:

V x =-fw9 (la)

V x H = 3wE (lb)

VE=0 (lc)

V. IH = 0 (1d)

where E 9 (f) is the electric field intensity in volts/meter, and A _ IA(F) is the magnetic

field intensity in Amperes/meter. w is the frequency in radians/second, pi is the permeability of

the medium in Henrys/meter, e is the permittivity of the medium in Farads/meter, and 3 = V/--.

Taking the curl of equations (la) and (lb) and combining them, we see that both 9 and H satisfy

the homogeneous wave equation [59]

V x V x 9(f) - k2 (f ) = 0 (2a)

V x V x I() - kk2H(fi ) = 0 (2b)

where k = wfp/c is the propagation constant of the medium in inverse meters. We assume that

the known incident fields, 9" and Ific, impinge on the open cavity, giving rise to the reflected

fields, 9rf and I ref, and the diffracted or scattered fields, 9scat and sat . The given incident fields

are defined to be those that exist in unbounded free space. The reflected fields are defined to be

those scattered by an unbroken, perfectly-conducting ground plane located at z = 0. The scattered

fields represent a perturbation due to the presence of the cavity, and are defined as the remainders:

scat -]g - ]ginc - ]Eref and H'scat - H - IHinc - Itref .
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In addition to equations (1) and (2), the fields must also satisfy certain boundary conditions.

The tangential component of the total electric field must vanish on 0" and S:

fix( 9(F) = 0 for f E S (3a)

i x 9(f) = 0 for f E ac (3b)

The tangential components of the total electric and magnetic fields must be continuous across the

aperture or:

lim. [ix9(f+ 6i ) - ,x E(f- 6i ) =0 for f E or (4a)
6--+0k 1
tim ) 0 for f' C a (4b)

Finally, the scattered fields must satisfy the Sommerfeld's radiation conditions at infinity ([59, pp.

485-6] and [31, p. 56])

lim [f. Vlscat(Fi) +lkflscat(f)] =0 (5a)
If1-+001

lim [. VI-scat(f) +kjrFIscat(f)] 0 (5b)

as well as the regularity conditions [59, pp. 485-6]

lim -f-scat(f) = 0 (6a)Ifl-+OO

lim IfIfsca(f) = 0 (6b)lIf1-+oo

3.3 Green's Functions

We introduce the scalar Green's function

e -3kR
G(k; F, F') - 4rR()

47rR (7)

where f = xi + yk + z and i' = x'1 + y'k + z'1 are position vectors in unprimed and

primed coordinates, respectively. The scalar Green's function satisfies the distributional differential
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equation

V 2 G + k2G = -J(F - F') (8)
= - x') 6(y - y') 6(Z - z')

as well as the scalar analogues of the radiation and regularity conditions expressed by equations (5)

and (6). For readability, we will suppress the dependence of G(k; F, F') on k, F-, and F' where their

presence is clearly implied.

For convenience we define the auxiliary scalar functions

GD(k;F,F') G(k;r,F') - G -(k;,fi') (9a)

GN(k; F, F') = G(k; F, iF') + G(k; iF, Fij') (9b)

It is easy to verify that GD and GN satisfy the homogeneous boundary conditions

GD (k; i, V) = 0 for z = 0 (10a)

-GN(k; f, F') =0 for z = 0 (10b)

We shall refer to GD as the Dirichlet scalar half-space Green's function, and GN as the Neumann

scalar half-space Green's function. We recognize GD as the Green's function for a horizontal

electric dipole over a ground plane, and GN as the Green's function for a vertical electric dipole

over a ground plane [62, page 404]. Next, we introduce the dyadic function

F(k; F, r') = -3kVG(k; F, F') x =I (11)

where I = i + + H is the idemfactor. One can show that 1 satisfies the distributional

differential equation (Appendix A)

V x V x F - k2F = -kV6(f -F') x I (12)
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The curl of r can be expressed in the alternate forms

V x P(k; F, f') = -3k [k 2 G(k; r, ') + VVG(k; i, F')]

=-31k f [3 + 33kR + (3kR)2 ] fu

[i +ykR ~k)2] =} G(k; fF'
R 2  (13)

where R = (F - -') /R. Similarly, we define the auxiliary dyadic functions

Ti = -jk (VGN x It + VGD x H) (14a)

2 = -jk (VGD x It + VGN x H2) (14b)

where It = R + SrS" is the transverse idemfactor. It is easy to show that the auxiliary dyadic

functions satisfy the homogeneous boundary conditions

, x 1 = 0 for z = 0 (15a)

x V x F2 = 0 forz = 0 (15b)

as well as the equations

. [A (F) x V x Pi(k;F,F')] 2i. [A(i) x V x F(k; f,f')] forz = 0 (16a)

. [A(f) x V 2(k; F, F')] 2 [A(F) x F(k; F, F')] for z = 0 (16b)

where A(F) is any vector function of position.

3.4 Radiation Integrals

The scalar and dyadic functions defined in the previous section provide the building blocks

for three theorems which are fundamental to the development of the integral equations of our

problem. All of these theorems are presented in [2] and proved in Appendix A. We state them

here.
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Theorem 1 Let V be a homogeneous region with regular boundary OV, fi be the outward unit

normal vector on OV, and F - P(k; F, F') be defined by equation (11). If A- = (F) satisfies

VxVxA-k2A-0 V iFGV,then

3kV' x A(") forF' E V
ivJAX [VxV] + [VX X xiI ds { (17)

V0 fr i' V

where V is the closure of V; that is, the union of V and its boundary.

Theorem 2 Let V, V, V, fi, and A be defined as in Theorem 1. Let 1 be defined by equa-

tion (14a), V be the image of V with respect to the xy-plane, and Vi be the closure of Vi. Then

3kV' x A(i') forf'EV

fvfi {A x [V x F1 ] + [V x A] x Vi} ds= x A(ril)] forF' E Vi

b8( ) 0 
for r' V UVi

(18)

Theorem 3 Let V, V, DV, Vi, Vi, fi, and A be defined as in Theorem 2. Let V 2 be defined by

equation (14b). Then

kV' x A(') for F' E V

L fi "  x [Vx V2] + [Vx A]x F 2 } ds = -3k [V x .(it)]. forF'E Vi

0 for "' §VUVi

(19)

The operator V differentiates with respect to unprimed coordinates, while V differentiates
with respect to primed coordinates. The differential operator V is the same as V except that -A-

is replaced by =-. Theorems 1-3 do not apply when F' lies exactly on DV, but are valid as F'

approaches DV from either the interior or exterior of V.

Much like the source-free form of the Stratton-Chu equations [59], Theorems 1-3 relate a

vector function evaluated at a point to an integral over a closed surface. We may think of A and
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V x A on the surface as effective sources giving rise to V x A in the volume interior, and, in the

case of Theorems 2 and 3, V x A in the image of the volume interior. However, Theorems 1-3

are stated in general terms; the only requirements are that the vector function A(e) satisfy the

homogeneous wave equation (2) and that the outward unit normal fi be defined almost everywhere

on OV. In this section, we will specialize Theorems 1-3 to the OCRED scattering problem shown

in Figure 3 by associating A(f) with various OCRED field components and associating V with

either the cavity volume D or the upper half space, z > 0.

A notational distinction arises when the cavity volume D is filled with a material whose con-

stitutive parameters differ from those of free space. When we associate V with D, the wavenumber

for the cavity medium appears in the wave equation and the scalar and dyadic Green's functions;

that is, k = k, = wv -7i-j-. When we associate V with the upper half space, the wavenumber is

the free space wavenumber, k = k0 = w- -fp0E.

An exhaustive list of the possible equations arising from the application of Theorems 1-3

to the OCRED problem appears in Appendix B. Here, we will only present those results which

directly contribute to the final integral equations of Section 3.5.

Application 1. Let V = D, A = H4, and e' E D in Theorem 1. Making use of equations (lb)

and (3a), we obtain

kYiE() I j [ i t)F] .V x r (k1 ; f, F:') ds

- ykl 1Y f, Ii x (f)] . (k,; i, ') da for F' e D (20)

where Y 1 = /-lp is the intrinsic admittance of the cavity material. Equation (20) shows that

the total electric field at any point in the cavity volume is a function of the tangential electric and

magnetic fields on the cavity surface and aperture.
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Application 2. Let V D, A E, and F' E D in Theorem 1. Making use of equations (la)

and (3a), we obtain

k 2ZH() r L [ x E(flj - V x :]P(kl; r, F1) ds

Z-JklZ1L [fiX iH(f)] . (ki; r, r') dco for ' E D (21)

where Z1 = Vj/ql is the intrinsic impedance of the cavity material. Equation (21) shows that

the total magnetic field at any point in the cavity volume is a function of the tangential electric and

magnetic fields on the cavity surface and aperture.

Application 3. Let V be the upper half space, A = E 't and z' > 0 in Theorem 2. Making

use of equations (la), (3b), (15a), and (16a), we obtain

-ko fscat(ri) = L x 1(i) • V x f(ko; F, F') da for z' > 0 (22)

Equation (22) shows that the scattered magnetic field at any point in the upper half space is a

function of the tangential electric field on the cavity aperture.

Application 4. Let V = D, A = 1, and F' E D in Theorem 3. Making use of equations (la),

(3a), (15b), and (16b), we obtain

A3kit') = 2L [2 x ftiF)] .PV(k,; i, F:') do,

+ [f ixi-(F)] .LP2(ki;i,i')ds for i' E D (23)

Equation (23) shows that the total magnetic field at any point in the cavity volume is a function of

the tangential magnetic field on the cavity surface and aperture.

Application 5. Let V be the upper half space, A = IA t, and z' > 0 in Theorem 3. Making

use of equations (Ib), (3b), (15b), and (16b), we obtain

- 3 k0 scatw (r- 2 x 1(t) VF(k0; i, i') da for z' > 0 (24)
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Equation (24) shows that the scattered electric field at any point in the upper half space is a function

of the tangential electric field on the cavity aperture. This equation serves as the overall radiation

integral for the OCRED scattering problem. Once 2 x E on a is known, equation (24) allows us

to calculate the OCRED echo area Ae (also known as radar cross section) using the well-known

definition [21, page 116]

li,2 2-ctl

Ae lim 47r I E' ]scat(Ft) (25)

where the incident field is a uniform plane wave having unit amplitude.

3.5 Surface Integral Equations

Equations (20)-(24) define the total fields in the cavity volume and the scattered fields in

the upper half space in terms of the tangential field components on the cavity surface and aperture.

Thus it is sufficient to find these tangential field components to solve the entire OCRED scattering

problem. In this section, we develop surface integral equations which may be used to find these

tangential field components.

We notice that the left and right sides of equations (20)-(23) involve different types of field

quantities. Specifically, we see that the right sides of equations (20)-(23) involve the tangential

components of E and ft evaluated on OD, but that the left sides of these equations involve E and

H evaluated at points away from OD.

To make equations (20)-(23) more useful, we will let F' approach aD, and then "sift out"

the tangential component of the result. First, we fix a point r on 9D, so that fi is the outward unit

normal vector at iF, as shown in Figure 5. Second, we cross multiply the equations by fi. Finally,

we let F' = f + 6 fi and evaluate the limit as 6 -+ 0. In so doing, we make use of the following

theorem ( [2], [30, p. 334], [62, p. 354], [48, p. 205]):

Theorem 4 Let V be a volume with regular boundary DV, F be a fixed point on WV, fi be the

outward unit normal vector at i, and F(k; F, F') be defined by equation (11). If A (F) is continuous

20



OD fi

Origin

Figure 5 A portion of aD in the neighborhood of r. The point r' approaches r along fi such
that i"-f= 6 fi.

on OV, then

lim fi x J fI(r")" V (k; i", F') ds"
F- f a V

= F +A() +fix A(F") • ;, ") ds" (26)2 a

where the upper sign is taken if i ' --+ ffrom the exterior of V, and the lower sign is taken if F -i F

from the interior of V.

Theorem 4 provides a means to treat the limit of the integrals involving the dyadic kernel r as

F' approaches OD; the limit as F' -+ aD is different from the evaluation of such integrals with

-' E OD. In contrast, integrals involving the dyadic kernel V x F exhibit no such discontinuity

and behave as

lim fix J X(F") . V x r(k; F", i') ds" = fi x f A(F"). V x (k; F",rF') ds" (27)
7)v v

where V, V, F, fi, P, and A are defined as in Theorem 4. Furthermore, we note that the total

tangential fields are continuous across o-, as shown in equations (4a) and (4b).

We now apply the procedure outlined earlier in this section to each of equations (20)-(23).

21



Application to equation (20). Fix E o so that fi = i, and set ' =, - J , with6 > 0. We

cross multiply equation (20) by 2 and take the limit as 6 -+ 0. Applying Theorem 4, we obtain

2D

2 zf x ft(F') it' V Fk

+ jkYl x J [i x f(F)] .F(kl;',') da for ,' c a (28)

It is easy to show that 2 x I ([2 x (F (ki;iFV)} 0 when Ft a and F' Ea. Thus the

second integral in equation (28) vanishes and we are left with

-kly x f [fiX A V x (kl;i,')ds for F' E a (29)
2 JaDfi

Equation (29) shows that the tangential electric field on a can be expressed as a function of the

tangential magnetic field on OD.

Application to equation (21). Fix f E a so that fi = 2, and set F' = F - 6 2, with 6 > 0. We

cross multiply equation (21) by 2 and take the limit as 6 -+ 0. Applying Theorem 4, we obtain

OfZ---- l -(,') i X Vr X IF') 'V (kl; i, i t ) ds

2 1F)= L [2 x t(Ft)] liFF)d

-jklZl2 X f [fix f(F)]. .(k 1 ;i, F') ds for i' Go (30)

Equation (30) shows that the tangential magnetic field on a can be expressed as a function of the

tangential magnetic field on S and the tangential electric field on a.

Application to equation (22). Fix E a so that fi = 2, and set F' = r+ 6 2, with 6 > 0. We

cross multiply equation (22) by 2 and take the limit as 6 -- 0. Applying Theorem 4, we obtain

-k2Zo -sa , )  
fx scat() 2 x x () • V x r(ko; F, F') da for F' E a (31)

2
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Noting that ]ascat = A - fI'inc - A -e and that i x I4r f = 2 x A inc on a, this becomes

-k Z° I - 2Iinc(F')]
2 Lr

2 x 12 x -() •V x F(k; , -') da for -' e rr (32)

Equation (32) shows that the tangential magnetic field on a can be expressed as a function of the

tangential electric field on a and the tangential incident magnetic field on a'.

Application to equation (23). Fix i E S and set F' = r-- 3 fi, with 3 > 0. We cross multiply

equation (23) by fi and take the limit as 6 -+ 0. Applying Theorem 4, we obtain

Al W x fi(r') = 2fi' x L [2 x 1I(F)] " F(kl;F' ')

+ fi [ fs iX I(r)] P2(k,;F,F') ds fori' : S (33)

Equation (33) shows that the tangential magnetic field on S satisfies a second-kind integral equation

because the unknown function fi x A appears both within the integral and outside it.

Equations (29), (30), (32), and (33) are coupled integral equations involving four functions:

the tangential magnetic field on S, the tangential electric field on a, the tangential magnetic field

on or, and the incident tangential magnetic field on a. The last of these functions is known while the

first three are not known a priori. We associate these tangential field components with equivalent

current densities as follows:

Js() =fix A(i) for F C S (34a)

i ,i) x I(F) for Fa E o (34b)

l()=-i x I() for i C a (34c)

jo(i) =2, x finc(r:) for F E a (34d)

We call is and J, "equivalent electric current densities" and M, the "equivalent magnetic current

density." J0 is the familiar "physical optics" electric current density that exists on an unbroken

ground plane. With these definitions, equations (29), (30), (32), and (33) become integral equations

involving three unknown current densities (Js, ,J,, and M,), along with one known one (J). We
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will find it convenient to combine equations (30) and (32) by dividing equation (30) by -k l ,

dividing equation (32) by - 3 ko, and forming the difference of the result. Then, equations (29),

(30), (32), and (33) become

i x J (r) . V x F(kl;Fr-') da + i x fs(f) . V x F(kl;f ') ds

_k1 Y ( for F' e a (35)
2

Vx (ki;,ri?) v x r(k; ir,r) V
i X M) k -3kl -k

+ kl Z2 J () - Zli x Js(r) .(kl; i, i') ds

,j (r ) for V E a (36)

2fio x J(r:) . r(kl;r,ri') do,+ fio x ss(it) -V2 (kl;r:,rit) ds

_kl is for V ES (37)

Equations (35), (36), and (37) constitute a system of three coupled integral equations involv-

ing three unknown functions: Js, Ja, and M,. When this system is solved and the equivalent

current densities Js, J, and M, are found, then equations (20)-(24) can be used to find the fields

everywhere in the cavity volume and in the upper half space.

We note that equation (35) may be considered to be an explicit definition of M, in terms

of J, and Js, which may be used in equations (36) and (37) to eliminate M, as an unknown.

Similarly, we note that equation (36) may be considered to be an explicit definition of J, in terms

of M,- and is, which may be used in equations (35) and (37) to eliminate J, as an unknown.

While these may seem appealing because they reduce the number of unknown functions from

three to two, this comes at the price of much more complicated integral equations involving iterated
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surface integrals. 1 We choose to keep the equations as simple as possible, and thus we will work

with all three integral equations for the remainder of this document.

3.6 The Degenerate Case

We define the degenerate case to be that in which the cavity is filled with free space. In this

case, k = kl = k0, Y = Yj = Y0, and Z = Z= Z0 , and examination of equation (36) reveals

that the dyadic kernel of the integral involving M, vanishes, so that equation (36) involves the

electric current densities J, and Js alone. In other words, the electric current densities J, and Js

effectively decouple from the magnetic current density M,. With M, eliminated, equations (36)

and (37) form a system of equations independent of equation (35). We note that this reduced set of

equations is identical to those developed by Asvestas and Kleinman [2].

In the degenerate case, it is possible to express the scattered electric field in Df in terms of

Js. To see this, we combine equations (178) and (180) to get

i.scat( W,) =1-l f js(it) - 1(k; it, i') ds for F'GDf (38)

Then by equation (lb),

scat I) = 1 X s(t). - V(k; F, V) ds for F' E Df (39)

Equations (36), (37), and (39) are all that are needed to solve the degenerate scattering OCRED

problem.

3.7 Summary

In this chapter, we have defined the OCRED geometry along with the characteristics of the

electromagnetic fields for the OCRED scattering problem. We have introduced dyadic functions

which form the kernels of several integral equations defining the electromagnetic fields everywhere

in terms of the equivalent electric and magnetic current densities on the cavity surface and aperture.

'Such a reduction may be attractive when dealing with very large geometries where matrix solve time dominates the

overall solution time, but in this effort we will limit ourselves to smaller OCREDs.
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We have transformed these integral equations into a set of three coupled surface integral equations

that are satisfied by the equivalent current densities. We have shown that this set is a generalization

of the set developed by Asvestas and Kleinman.
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IV Numerical Solution of the Integral Equations

The set of three coupled integral equations (35)-(37) cannot be solved analytically for arbitrary

cavity shapes. However, we can approximate the solution to an acceptable level of accuracy by

using the method of moments [22]. The method of moments involves approximating the integral

equations by a system of linear equations, and then solving the system to find the unknown func-

tions. Provided it is implemented judiciously, the approximate solution produced by the method of

moments approaches the exact solution if the latter is available.

To start with the method of moments involves approximating the unknown function as a

linear combination of a known set of functions, called basis functions. Usually, the basis functions

are of the subdomain type, which means they are non-zero over only a small portion of the domain

of the unknown function. This allows great flexibility in approximating the unknown function,

but at the expense of needing to find a large number of coefficients. One useful choice of basis

functions [54] uses triangular subdomains to model the unknown function over arbitrary three-

dimensional surfaces. These triangles are typically 0.1A on a side (where A is the wavelength), so

that one square wavelength of surface requires on the order of 100 basis functions. It is easy to see

that the problem rapidly becomes unmanageable as the domain of the unknown function increases

in area expressed in square wavelengths.

The remainder of this chapter is organized as follows. The geometry of a special class of

OCRED geometry is defined in Section 4.1. The basis functions to be employed in the method of

moments are introduced in Section 4.2, while the testing functions and inner product are discussed

in Section 4.3. The details of calculating the elements of the moment method matrix are given

in Section 4.4. The system excitation, or forcing function, is given in Section 4.5, and some

computational savings reaped by exploiting symmetry properties are shown in Section 4.6.

4.1 Body of Revolution OCRED

Since the backscatter pattern of an effective OCRED is relatively insensitive to small changes

in aspect angle, we will restrict our attention to those geometries having a backscatter pattern that

is independent of azimuth angle. Such OCREDs are symmetric with respect to the z axis, and
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are termed "body of revolution," or BOR, OCREDs. We shall see also that this restriction greatly

reduces the labor of modeling the OCRED backscattering problem.

Generating Arc

Figure 6 A cone frustum generated by revolving a line segment about the z axis.

Consider a simple, open curve that lies in the xz plane and does not intersect the z axis. If we

revolve this curve about the z axis, we generate an open surface that is rotationally symmetric about

the z axis. Such a surface is called a surface of revolution, and the curve is called the generating

arc. If the curve is a straight line segment, then the corresponding surface of revolution is a cone

frustum, as shown in Figure 6. If we let the endpoints, and only the endpoints, of the curve lie on

the z axis, then the corresponding surface of revolution becomes a closed surface, and the region

enclosed by the surface is called a body of revolution. If the OCRED cavity interior D is a body of

revolution, we call the OCRED a BOR OCRED.

The generating arc for the BOR OCRED is a bounded, piecewise-smooth plane curve which

begins at the origin and ends on the z-axis somewhere below the origin. The BOR OCRED gener-

ating arc is shown in Figure 7. It does not intersect the z-axis except at the endpoints, and, without

loss of generality, we restrict the generating arc to lie in the xz-plane. We parameterize the gen-

erating arc by its arc length e such that t = 0 corresponds to its endpoint at the origin and t = L,

where L is the length of the generating arc, corresponds to its endpoint on the negative z axis.

If f(t) is a point on the generating arc, then we see that F(e) is uniquely determined by its

coordinates in the xz plane; that is, F(t) = R p(t) + i z(e), as shown in Figure 7. Since, for the
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a(f)

i=L

Figure 7 The generating arc of a body of revolution (BOR) OCRED. The dashed portion gener-
ates the aperture o, while the solid portion generates the cavity surface S. The arc length variable i
increases from 0 to L. The position vector iF(i) defines a point on the generating arc, with normal
vector fi(t) and tangent vector 1(t). The angle a(t) defines the orientation of 1(f).

BOR OCRED geometry, no part of the generating arc lies above the z axis or to the left of the x

axis, we see that p(t) > 0 and z(e) < 0 for 0 < R < L.

If we now allow i?(e) to rotate about the z axis by an amount 4 in the positive sense, then we

see that every point on the surface of revolution is specified by the chosen values of i and 4 in the

ranges 0 < f < L and 0 < 4 < 27r. For arbitrary f and 4, the corresponding point on the surface

of revolution is then given by

r-(t, 0) = Rp(f) cos4' + p(t) sin4' + i z(f) (40)

It is obvious that p, 4, and z are the coordinates of the circular cylindrical coordinate system.

We have established that the coordinates f and 4 uniquely determine a point i(f, 4) on

the surface of revolution. In addition, they also determine several vector quantities of interest.

Specifically, we define i(f) to be the unit vector in the direction of increasing t, $(4) to be the

unit vector in the direction of increasing 4, and fi(f, 4) to be the unit vector normal to the surface,

pointing away from the interior volume. It is easy to see that £, 4, and fi are mutually orthogonal.
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Thus, i and are tangent to the surface at F(i, q). The angle a(i) describes the orientation of

and fi in the xz-plane, such that = icos a - sin a and fi = * sin a + k cos a. The radius p( )

is the magnitude of the projection of F(e) onto the xy-plane and is given by p(e) = li() • it

The generating arc for a BOR OCRED can have any amount of curvature so long as it

generates a valid BOR OCRED. To make the analysis more tractable, however, we shall require

the generating arc to be piecewise linear. This is not too great a restriction since we expect an

arbitrary curved generating arc may be well approximated by a piecewise linear one, especially if

the line segments are small compared to a wavelength.

Consider a piecewise linear BOR OCRED generating arc consisting of N segments joining

N + 1 nodes. We number the nodes in ascending order such that each node corresponds to a

progressively larger value of the arc length variable t. Then we may write the relation

0 = 0 < l < 2 < ... < fN+l = L (41)

The number of segments that generate the aperture a is Na and the number of segments that

generate the cavity surface S is N, such that N = Na + N. Now suppose i?(t) is a point on the

nth segment; that is, <n-1 < <tn. Let p, = p(En) and zn = z(fn). Then any point i"( ) on the

nth segment is fully characterized by the linear relations

p(t) = Pn-1 (.-) + P. ( n-1) for tn-1 < f < n (42a)
en- en-l

z(f) = Zn-1 (in - ) + Zn ( n-1) for tn-1 < f < tn (42b)tn - tn-1

The orientation angle a(f) is constant on the nth segment and is given by

a(f) = a
zT- 1 - zn(43)

= arctan for in-I < i < in

Pn - Pn-1
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Figure 8 A piecewise-linear generating arc. Na segments generate the aperture a and N, seg-
ments generate the cavity surface S. The nth segment falls between r(n- 1) and r(en).

4.2 Basis Functions

The first step in the method of moments is to define a set of basis functions capable of

accurately approximating the unknown functions. Referring to equations (35)-(37), we see that the

unknown functions we wish to approximate are M,. (F) and J, (F) for r- E a and JS (f) for F E S.

The basis functions we will use here are the same as those used by Mautz & Harrington [41] and

Medgyesi-Mitschang & Putnam [44]. These basis functions have a piecewise smooth variation

with t and complex exponential (Fourier) variation in q. We define the basis functions formally as

-mn(£ ,) = 3m (44a)

-mn t,) = e3m T ) (44b)p(£)

where£ = *cosa(t) cosq€ + cosa(t) sine0 - 2 sina(t), = -- - sine0 + 5 cos4, and

Tn (t) is a "triangle" function as shown in Figure 9 and given by the equation
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0-

Figure 9 Triangle function, Tn (t). Tn (t) is the piecewise linear function having unit amplitude
at &n and vanishing at all other nodes on the generating arc.

] fort,-, < t < t,

T( =V) 1  for &n < t < t,+l (45)

0 - otherwise

When n = Na, we will treat Tn(t) to be either the left half-triangle or the right half-triangle,

depending on whether Tn (t) is being used in a basis function with support on the aperture or the

cavity surface, respectively. This is necessary to allow for the possible discontinuity of the electric

and magnetic current densities in the neighborhood of the aperture rim. Using the basis functions

of equation (44), we approximate the unknown functions by

m=-M n=1
M Na

Bran) mZn (, q) + A O1 n(e, )] (47)

m=-M n=1

M Na+Ns
B' n V, )] (48)

m=-M n=

where M is the highest-order Fourier mode to be included and Amn, B-, and are complex

coefficients to be determined. The choice of M will be discussed in Section 5.4.3, but it should be

proportional to the electrical size of the aperture, that is M oc ENa /A. Likewise, Na and N, will
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increase linearly with frequency. In equations (46) and (47), 0 < f < eNa and 0 < 4 < 27r, while

in equation (48), £Na < f < eNa+N and 0 < 1 < 21r. To enhance numerical stability, we scale the

expansion of M, by Z0 so that all expansion coefficients will be of similar orders of magnitude.

The behavior of the fields near the rim of the aperture provides valuable information. As-

suming that the radius of the aperture rim is not too small, the electric and magnetic fields near the

aperture rim obey the same conditions as the fields near the tip of a two-dimensional PEC wedge,

as shown in Figure 10. In the two-dimensional wedge geometry, p measures the distance from

the wedge tip and o measures the angle from one of the wedge faces. This geometry is studied

E0,0 P /Field point

a oo c

. . . .. . . . . . .... . .. . . .... ..... .... .. .... ... . . ... . ... :::

i-a

El, 14S 7r-

Figure 10 Two-dimensional wedge geometry corresponding to the aperture rim. 0 measures
distance from the wedge tip. o measures angle counterclockwise from ac. The region 0 < W < 7r
is the upper half space; the surface W = 7r is the aperture a; the region 7r < o < 27r - a is the
cavity volume D; and the surface o = 27r - a is the cavity surface S.

by Meixner [45], who shows that the total magnetic field parallel to the wedge tip is finite and

invariant with Wp as o -+ 0. Then by the relations J, = i x IH and Js = fi x H, we see that

lim J,• t = lir Js • t; that is, the f component of the electric current density on S U a is

continuous and finite in the neighborhood of the aperture rim. In contrast, the magnetic field per-

pendicular to the wedge tip is unbounded and varies with p as 0 -* 0, so that lim ,J • ¢ and

lir is are unbounded and, in general, not equal. Turning our attention to the electric field,
I'-rtNa I

we find that the electric field parallel to the wedge tip vanishes as p -0, while the electric field

perpendicular to the wedge tip is unbounded and varies with W as p - 0. Then using the relation

= - 9 × E, we see that lim . e vanishes, while lim 1V . q is unbounded. This a
33-+eNa
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priori knowledge of the behavior of J(, Js, and lM4, in the neighborhood of the aperture rim will

be extremely valuable in later calculations (specifically, Sections 4.4.2 and 4.4.3).

4.3 Testing Functions and Inner Product

The second step in the method of moments is to define a set of testing functions and an

appropriate inner product. In accordance with Galerkin's procedure, we will use testing functions

that are of the same form as the basis functions.

' (im, €, Tn'(e') ' (49a),, , , €) = p(e,)

-nmi , Tn'(e') (49b)

where :i = cos a(e') cos q' + k cosa (e') sin 0' - , sin (e') and ' = -R sin €' + " cos 0'. As

an inner product, we will choose the following:

(, ) = j A(i) . f*(F") ds' (50)

where 1t* denotes the complex conjugate of f3 and S U or = OD is the boundary of the cavity

interior. This choice of testing function and inner product allows us to realize the major advantage

of the BOR symmetry [41]. Since f eimOe_3m'do = 0 for m :i m', we see that the basis and

testing functions are orthogonal with respect to the inner product when their Fourier indices are

different. In other words, the different Fourier modes do not influence each other and effectively

decouple. This will allow us to consider each Fourier mode separately.

Applying our choices of basis function, testing function, and inner product to the coupled in-

tegral equations (35)-(37) results in a system of linear equations which can be expressed compactly

in matrix form as

2Y W(LC 2 '-Y) 1 [A
ZO(LW ,)1) IklZl+3 k°Z°), , ) -Z 1 (L4'",) J = (51)

L2(L5) (60, )J0
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where

f= , x fk i V X ) da forF' E o (52)

25= LX f ) " V x (kl; rr') ds for f' E a (53)

1 3 ~ 4  .v x r(kjf, v Vx(ko;ff')} da for F' E o (54)

£c44 = x fk() Pr(ki; i, i') ds for F' E u (55)

4'i5b= fil' x f (f) .F 2 (ki; F, F') da for F" E S (56)

40 = fi X f '(F) - 2 (k1 ; t, F') ds - k1(I) forf' E S (57)
is 2

Equation (51) is often written in compact form as ZI = V, where Z is called the generalized

impedance matrix, I is a column vector containing the desired expansion coefficients, and V is a

column vector containing the system excitation. The dimensionality of Z is 2(2M + 1) (2Na +

N,), which is equal to the total number of unknown coefficients. However, by exploiting the

Fourier orthogonality, equation (51) is equivalent to 2M + 1 smaller systems (ZmIm = Vm,

m = 0, +1 ... ± M), each corresponding to a different Fourier index m and having dimension

2(2Na + N8 ). This decomposition reduces the numerical complexity of the problem in two ways.

First, the number of matrix elements that must be computed is reduced by a factor of 2M +

1. Second, under the assumption that the computer time required to solve a system of N linear

equations using Gaussian elimination is O(N 3) [6], solving the (2M + 1) smaller systems can be

accomplished (2M+ 1)2 times faster than the equivalent larger system. Thus, exploiting symmetry

allows us to solve the BOR OCRED scattering problem (2M + 1)3 times faster than solving a non-

BOR OCRED scattering problem of equivalent size.

4.4 Calculating Elements of Zm

Each element of Zm corresponds to the coupling between a basis function and a testing

function. Typically, this involves calculating an iterated surface integral where the dyadic kernel

is V x f(k; F, F'), F(k; F, F"), or 1 2 (k; F, F'). It is convenient to partition Zm into 9 block sub-
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matrices:

z11 z12 z1 3[ 11
Z. z21z2 2 (58)

Z31 Z 32  Z 33

where Z2 denote the elements of Zm that come from testing equation (35), (36), or (37) (i = 1, 2, 3

respectively) and expanding M,-, J, or J. (j = 1, 2, 3 respectively). Examination of equation (51)

reveals that the elements comprising Z31 vanish identically. The other eight submatrices are treated

individually in the following sections.

zI

Domain of
Ti

Figure 11 Domains of (F) and yf'(F) for Z 1 , Z.11, Z2, and Zm. Both r- and F" are defined
on annuli in the xy-plane formed by revolving a portion of the aperture generating arc about the
z-axis.

4.4.1 Zm. Zm] is the 2Na x 2Na submatrix associated with the testing of equation (35)

and the expansion of M,. As shown in Figure 11, the domain of both the basis and testing functions

is confined to the aperture a. The elements of Zl'1 are found from the inner product

3, . " ) , o,', (59)
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where m = 0, +1, t2... , ±M, 1 < n < Na, and 1 < n' < Na, Since ' 1 q', the "cross terms"
( a', and ( , 1) vanish. We are left with

(¢mn , lmlf,) =(mn, mp,)

= f27r INd[gMO= 00 At,~e) 1 e pe') n, p(e') de' do' (60)

= 2w fer Tn(eVIM, (e') dip(e')

We note that p(e') = i' for 0 < if < eN. so that the integrand of equation (60) is a rational

function of polynomials in i' and the integral can be solved in closed form. We look at three cases

depending on the values of n and n'. If n and n' differ by two or more, the last integral vanishes

because the product of the two triangle functions is zero when their respective supports do not

overlap. If In' - nI = 1, then we have

<4n,, n- ,n = <n,, ̂  n>

7 2 w [ i n ( i n / - f') ( ' - i ) d e '
(in' - g)2 -n ed (61)

27r - i' - i~n + Mnn In in] for in - n[ 1

(in, - in )2  2 in'rn-n=

If n' = n, then we have

WM{n s1 imn io 4}n
ifn (e' -ein) 2  + fin1 Vn -e'f) 2  1

27' - e 1)2 &+ )2 d'= 2 in,-1 if (in - tn-i)2  in f(fn+1 _n I,)

f2 i - 3 1  [ + ]2 n i n (62)
2 i- 2 -- ) + / [ E d in

+ en - 3en+ 1 + [ 4~+1  1 2 In en+1 "~ for n'= n-2 (fn+l - in) i ,g+1 - in ino n

In equation (62), the following special cases must be examined. First, if n = 1, then we must

evaluate equation (62) in the limit as eo -+ 0 to avoid taking the logarithm of infinity. Second, if

n = 1, then we ignore the terms involving en+, due to the half-triangle function used in the basis

and testing functions at the aperture rim.

37



4.4.2 Z,. Z, is the 2Na x 2Na submatrix associated with the testing of equa-

tion (35) and the expansion of ,. As shown in Figure 11, the domain of both the basis and

testing functions is confined to the aperture a. From equation (13) we have V x J(kj; rF, r) =

-k(k + VV) G(ki; r-, r'), the elements of Z can be found from the inner product

41"~,) = k12L L {1,0( i [X .O aA(it)] G G(ki; r-, r-') do, da7'^6l r n, 1rnn L f -- ,n*[' "-

+ 1' '(i') ji{ x [~(Ft). VVG(ki; F, it')] I da da' (63)

where m = 0, ±1, ±2... ± M, 1 < n < Na, and 1 < n' < Na. The first integral in equation (63)

is a convergent integral, though improper due to the R - 1 singularity of the scalar Green's function

at F = i'. The second integral, however, does not converge in the classical sense due to the R - 3

singularity of VVG at : = f', and must be interpreted as a two dimensional Cauchy principal

value (CPV) integral [46]. However, this interpretation is troublesome when F lies on the boundary

of a because the CPV concept requires the division of a into two parts, one of which is a disk

centered at Ft with radius 6 > 0. To give meaning to the second integral, we regularize it by using

the following theorem (proved in Appendix C).

Theorem 5 Let X(f) and B(F) be continuous, piecewise differentiable vector functions defined

on the regular surfaces S1 and S2, respectively, such that A' . A = 0 on S1 and f6. B = 0 on S 2

where W' is the unit normal on S1 and fi is the unit normal on S2. Then

fs/ fs2 FA('). fi' x [B(it). VVG(k; Ft, ')] ds ds' =

f/1 hS G(k; r-, F') [V, -il(F)] IV. [W' x A(V')] } ds ds'

+ /S is G (k; F, F') IV, . 1 (F)] A(F') -dd' ds (64)

+ /S f. G (k; F, F') IV,' [6'l x X (it)] } t [(it) x ii] - W~ ds'

+ is J~ G (k; F-, F-') [f3(it) x 6i] . dA i(rF1) -.

2 2°

where the line integrals are traversed in the positive sense with respect to the normal vectors.
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Theorem 5 is valid for any regular surfaces S1 and S2, even those that overlap. In particular,

Theorem 5 is valid when S = S2. If we associate both S1 and S2 with a, and let A(iW) =

AO t() and B (f) = ¢ ¢ (r), then equation (63) becomes

(k2" ') k L (:). [2 X ' }G(k; i, f') do, da

+ Lf f v [iF) x~;,' G*(FI F l d , (65)+fan tr r d ' do, (65)

+ Li {V: 2 xi X ton/* } G (k; i, V) [&'0.(it) x 2] 6 ddo

+ G (k;,') [ i](.) x i!2] y *(Fi) . d'

where both de and d ' are differential vectors along the aperture rim, pointing in the direction of

increasing €. We note that, with S = a and S2 = a,

d = d - q' eNa do' (66)

da = de do da'=e' de' do' (67)

we can write equation (65) as

io1 io iolf i 1 I,, n.)-
+j o { " ) [2 x '(t,0)] Gfdido f'd'do'

fof o V v dI,-[2r e N. 27r 
(68)eo)Gi fd i o

+ N a f j OI [f. 2(7, )] .G (EN , 0') do' f d edo (68)

+ eNa 2fINa f {v . [ X ,0')] } G ['eNa, ) x 2] .do e' de'd'

+ eaj 2  2 G [' (f, 0) x 2] . do5 j* (eN, 0) do5

where V - 4An, -'* - I,', and G - G(k1; F:, F') have been introduced to improve the readabil-

ity of the formula.
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It is easy to see that all the integrands in equation (68) are functions of f, f', and 0 - 0'.

Employing the change of variables 0 = - q$ and after some tedious algebraic manipulations, we

can write equation (68) as

(C1 ,9 t') =
Na 27rgNa

2 N.2-r N.e 3klRkII 2R f (fe1,o) [2X (R,0)]J fdOi tf f f 2
0 0 0

IN.~ 2rfNa 
3 ,R [

+ IIIf eA1 (v8 . ),) [i X j~*(eIO1 def'
0 0 0

INa 2-r . ,, (69)

+ EN. f fg e [V, t(,0)] *(iN,O0) fredtdo- - 'N jj 2R

0 0

N a 2 7r

+ ° {vg. [ x'*(e,O)]} [ °O X d],I4,JoIe

0 0

+Nof [ (eNa, 0)×X 1. *(eN,). do
0

where R = R(e, f', 0) = - ,)2 + 2W£' (1 - cos 0), t = Na in the fourth and fifth integrals,

and f' = fNa in the third and fifth integrals. It will be shown in Section 4.4.3 that the last two

integrals in equation (69) exactly cancel with two other integrals associated with Z, and thus do

not contribute to Z1.

The weak singularity of the first two integrals in equation (69) can be extracted and integrated

analytically using the relation [19]

b E (K) -a( ) E < a < b

1 -fdfdO={bE( ) 'E( ) + -- F--- a < f' <b (70)

0 a'E(,) a'E() ,-b 2 K()+-' --K , a<b<

where K and E are the complete elliptic integrals of the first and second kinds, respectively.

40



z x

ZDomain of (F)

Figure 12 Domains of f(F) and I(i') for Z, and Z,. F is defined on an annulus in the xy-
plane formed by revolving a portion of the aperture generating arc about the z-axis. F' is defined
on a cone frustum formed by revolving a portion of the cavity surface generating arc about the
z-axis.

4.4.3 Z,. Z, 3 is the 2Na x 2N, submatrix associated with the testing of equation (35)

and the expansion of is. As shown in Figure 12, the domain of the basis functions is confined to

the cavity surface S while the domain of the testing functions is confined to the aperture a. From

equation (13) we have V x r(ki; F, ") = -jk1 (k2 + vv) G(ki; F, r'), the elements of Zl,3

can be found from the inner product

r k* ). [i x (it)] } G(ki;i, ') ds do'

+L * <*(Fi) { I x [~~F.VVG (k,; it, F']t ds do,' (71)

where m = 0, +1, ±2... M, N, < n < Na + Ns - 1, and 1 < n' < Na. Employing the same

regularization procedure as used to calculate the elements of Z., we obtain
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(L 2q ,..,

kL L { m, () [2 x F }G(k; , it') du dal

+ IVf [ 2 xm { [ I Gx(k F')} ) dx i] da
+ (72)r

+ [ (k[;(it Gt (it) x i , (- ) W , d6

' S

where d is a differential vector along the aperture rim, pointing in the direction of decreasing

and d6' is a differential vector along the aperture rim, pointing in the direction of increasing q$.

We note that, with S = a and S2 = a,

66 = - £Na do diJ = b' Na do' (73)

do, = i di do da' = f' df' do' (74)

we can write equation (72) as

(I 1 ., ) =

27r1Na 27r L

fkfJf]f] C Y {(', 0).[x4( t )]
0 0 0 a

2 7riNa 27r L

0 0 0 iNa

2wr L 2r (75)

+ fNa f]]]fG [V. .V()] j5* (N, 0' dok' f dfdo

o fNa 0

27riNa 27r

- fNa fJJfG IV.2 xj~(yI] [ (eNa,q5 x] .dt' dildob'
0 0 0

27r 27r

00
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where V = q* , and G G(kl; F, F') have been introduced to improve the readabil-

ity of the formula.

Proceeding as in section 4.4.2, we make the change of variables 0 = - 4' and write

equation (75) as

k Na,27r L e- kR(fer ,O) fd Oi f
f f f 2R(t, l0) Irveo) [i X y0]1
0 0 INa

eNa2lr Lf
IN 2 3k R(,1', O)

+ I f f 2R(i, i, 0) IV, - (t 0)1 IV; - [2 1. -'(ill 0)] } f di dOi' df'
0 0 INa

L 27r e(76)
+ 'No k 2R(f, N, 0)

i1a 0

1
Na 27r 3klR(Ne'e) I 1*(ill00 x e]a'o O]

f -f 2R(Na x0)

0 0

27r

Naf2R(Na, tNa, 0) V(N, 0) X i] • ~ 1 0*gN,)" dO

0

where R(t,f',0) = V/[p(j) - f,]2 + 2p(i)i' (1 - cos0) + z(f) 2.

Because of the continuity of J 1! in the neighborhood of £Na we see that the last two integrals

of equation (69) and equation (76) exactly cancel, and so never need be calculated. In fact, the

presence of these integrals in the first place is an artifact of the separation of J into J, and Js.

This separation is justified because of the discontinuity of J. 4 across the aperture rim, but J.

could easily be modeled as a single continuous function from 0 < i < L.

4.4.4 Zm. Z21 is the 2Na x 2Na submatrix associated with the testing of equation (36)

and the expansion of M. This case dictates that the domain of both the basis and testing functions
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is a. The elements of Z" can be found from the inner product

(C3 0- , on []}
7. *xl ¢XF W)E V xJr(kj;i,F') V x F(ko;F,F') . dad' (77)

Lj ^mn(r V -1kl - 3]

where m = 0,±1,±2... ± M, M, < n < N + N, and 1 < n' < N.

From equation (13), V x F(k; F, i')/(-3k) can be written

V x IF(k; r-, V")
- k , { [3 + 3jkR + (3kR)2] ftft

-[1 + kR + (3kR)2] } G(kI R' (78)

where R = (F - i') /R. Then the dyadic kernel of equation (77) can be written as

V x r(kj;F, ') V x r(ko; F, V')

- 3 kl - 3 ko

S[3 + 3jk1R + (jk1R)2I e -klR - [3 + 33koR + (jkoR)2] e-3k°R A
47rR 3  } A15

[1 + AlR + (3klR)2] e-3klR - [1 + 3koR + (3koR) 2] e-3k°R

47rR 3  1 (79)

Expanding the complex exponential in a Taylor series about R = 0,

e-3kR = 1 - jkR + O(R 2 ), R -+ 0 (80)

we find that

V Vx r(ki; i', ) V x F(ko; F, F') } = O(R-1), R -+ 0 (81)-jkl -jko

for arbitrary vectors A and 3. As a consequence we see that, although each of the dyadic functions

V x r(ki;f,f')/(-jki) and V x P(ko;f,f')/(-Iko) has a R - 3 singularity at F = i', their

difference has only a R - 1 singularity there. Thus the integral in equation (78) is merely weakly
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singular and can be handled numerically using the extraction procedure outlined at the end of

Section 4.4.2. Of course, in the degenerate case of an unfilled OCRED cavity, kl = k0 and the

dyadic kernel identically vanishes.

4.4.5 Z22 . Z22 is the 2Na x 2Na submatrix associated with the testing of equation (36)

and the expansion of j.,. This case dictates that the domain of both the basis and testing functions

is confined to the aperture a. The elements of Z22 are found from the inner product (V70 .')

where m = 0, +1,±2... ± M, 1 < n < Na, and I < n' < Na. This inner product is given in

Section 4.4.1, and we simply restate it here for completeness.

= = (82a)
1- - -To t.(mn,"Nmn' ) = (Omn,, Ifn' )

i n U(e -e 1)+ L n-l I 2 }. In

+ fn - 3en+l + &1 ] 2 fn+n

- q'2 ( fn+-e) f+[gl nJ n- (82b)

(1 r 1 2 _227 I + Entn' In ,, in/ - n j

0 In' - n> 1

If n = n' = 1 in equation (82b) then the term involving In [n/in-1] is ignored, while if n = n' =

Na then the terms involving fn+l are ignored, for the same reasons as given in Section 4.4.1.

4.4.6 Zm. Zm is the 2Na x 2N, submatrix associated with the testing of equation (36)

and the expansion of Ja. This case dictates that the domain of the basis functions is confined to the

cavity surface S while the domain of the testing functions is confined to the aperture a, as shown

in Figure 12. The elements of Z, are found from the inner product

-(C,4 -, vr ,.,). -X IF gkj; i , i ) da' (83)( 4)mn"/ la) I mrn •~ M~ l I dI
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where m =0, 1, ±2... M, N < n < Na + Ns - 1, and 1 < n' < Na. Writing f(k; r,') =

-3k VG(k; f, V) x I, ve obtain

(). P(kl; ,9') = -3k V  [VG(k; F,9') x
(84)

-3k ¢ (i) x VG(k;r,9')

where we have used the identity A. (B X ) = (Ax B). C. Explicitly writing

1"e3kR"

VG(k; 9,9') = (-3kR - 1) e--R (85)
41rR 3

(-3kR -1) Ga(k; f, ') f (86)

where R = -t', equation (83) becomes

(L4 ."tD -3- o

(-3kR - 1) G(k; i ,') ds da' (87)

Although the integrand in equation (87) has a O(R - 2 ) singularity at F = F', since the cavity

surface S and aperture a do not overlap, the integral converges. We now calculate each of the four

permutations of the vector portion of the integrand of equation (87). We have

!=Rcosacos±+rcososinOp-isina (88a)

= -*Rsin¢ + kcos 0 (88b)

= R cos 0' + k sin 0' (88c)

= -: sin 0' + k cos 0' (88d)

1i = * (pcosq¢- p'cos 0') + k (psin0 - p'sin 0') - 2z (88e)
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from which we find

x (tx 1i) = [pcos( - 0') - p'] sina + z cos acos( - 0') (89a)

x ( x 1) = [psina + zcosa] sin( - 0') (89b)

.2 x x R) = -zsin( - 0') (89c)

-' 2 X (X R-1) = z eos(O - 0') (89d)

z x

ZDomai of r-(F'

Domain of OW)

Figure 13 Domains of i(ir) and I(?) for Z,. if is defined on a cone frustum formed by
revolving a portion of the cavity surface generating arc about the z-axis. r' is defined on an
annulus in the xy-plane formed by revolving a portion of the aperture generating arc about the
z-axis.

4.4.7 Z32. Z32 is the 2N, x 2Na submatrix associated with the testing of equation (37)

and the expansion of j,. As shown in Figure 13, the domain of the basis functions is the cavity

surface S, while the domain of the testing functions is the aperture a. The elements of Z2 are

found from the inner product

, ,-', , *) = .14 * {v.fl x [ n(it) • P(kl; F, r')] I da ds' (90)
77 5q n ' n I 7 "Yn I ' ) fI

where m = 0,-±1,+2,... ,+M, 1 < n < Na, and Na < n' < Na + N, - 1. Noting that

r(k; F:, F') can be written as

F(k; r, r') = -3kVG(k; F:, ') x =I (91)
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Suin eientity C, we can write equation (90) as

* - 3 kl L (r). fi' [ (F) x VG(k; f, d d' (92)

Making use of equation (85) in equation (90) we obtain

-31 k, f { X [e$ F)-X 3

(-jkR - 1) 4irkR do, ds' (93)

where R. F - V. Although the integrand in equation (93) has a O(R-2 ) singularity at F = F',

since the aperture oi and cavity surface S do not overlap, the integral converges. We now calculate

each of the four permutations of the vector portion of the integrand of equation (93). We define the

relevant vectors as

= R cos 4 + k sin ¢ (94a)

4 = -R sin 0 + k cos (94b)

P= cos acos$' + Scos a'sin4' - 2sin a' (94c)

' = -R sin 0' + cos$' (94d)

1R = R (pcos -p'cos4') + $ (psinq -p'sin 0') + iz' (94e)

from which we find

xi Xg × fl) = -z' COS(-¢) (95a)

' fi' x (g x ft) = - (p' sina' + z' cos a') sin( - 0') (95b)

×i X€ x1) = z' sin(¢ - 0') (95c)

$'. fi x x 1 ) = [p - p' cos(o - 0')] sina' - z' cosa' cos(O - 0') (95d)

4.4.8 Z, 3 . Z3 3 is the 2N, x 2N. submatrix associated with the testing of equation (37)

and the expansion of Js. As shown in figure 14, the domain of both the basis and testing functions
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z x

Domain of ()

Domain of I(F')

Figure 14 Domains of (f) and Y(i:') for Z3. Both F and V' are defined on cone frusta formed
by revolving a portions of the cavity surface generating arc about the z-axis.

is the cavity surface S. The elements of Zm3 are found from the inner product

6 =L n' L ~ ). { fi' x [a(F) " 2(k; , F') ds ds'
(40 fS f' .....I'),,,

! f - ( Yr'' O V 1ran ) ds' (96)

where m =0, 1, +2,... , ±M, N_ n < Na + N, - 1, and Na <n< Na + N, - 1. Noting

that F2 (k; F, Fr') can be written

1 , i') = -jk [VG(k;F, F') x I-VG(k;f,fj') xii] (97)

and using the identity f. x = [Cx 3] C, we can write equation (96) as

6fx' [I (r)xVG(ki;i, ')]} ds ds'

- f W' n '  x [im'() x VG(ki;, fj)]} ds ds' (98)

l !f",(F') . ( t,') ds,

2 
4
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We may express the gradients of the scalar Green's functions as

VG(k; f, F') = (- 3k li- F' - 1) exp (-3k I- i(99a)
47r li- F' 'VC~k ,i)=(-3kI -','- 1exp (-3k I it- f, I)

VG~; -,it') (3kli - til 1 47rIr it 2,1 (f - )(99b)

We have defined R = IF- F'I and R = f- f'; we will now define R, = I r- fi' and A. =

f - Ft'. Note that this definition of R, is a deviation from the convention that the subscript i on

a vector indicates the image of that vector! These quantities are shown in Figure 15. We rewrite

z

,/ X

F
F'

rS

Figure 15 Definition of fi. ll = F - it' where F: denotes a point on S and Fi' denotes a point
on Si.

equation (98) as

(C6' At, 17 n =

-3kjS S I" ' r R fi t Xx J( I (-3kR -1) 47rR 3 ds ds'

+k 1 lL{f [W' x {, (r) x } (-3kRlh - 1) ds ds' (100)

kl f ,0(r-) "'n t ( ) ds'
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Using elementary vector analysis, we may show that A ( X - . B x )so equa-

tion (100) becomes

(4Q~,-tY,') =
f3 k f s r .e , -k l R

k '~ ~,~,* fi) x {~()x f}]}(-3kR - 41rR

- 3 kj f*f I r() " [fix I¢'€(F) ffll e-(-kiR- 1) e- ds ds' (101)
Jm s -, -t W- X -kR- 1 T rR 3

3 k L ( r ") m ( it ) d s '

The second integral in equation (101) converges because Ri > 0 for r E S and F1 E S. The third

integral also converges since the integrand is bounded on the (finite) region of integration. The first

integral in equation (101) must be handled carefully because of the (apparent) O(R- 3) singularity

of the integrand at F = i'. However, we can show that

1%-i').- [Wl x f b(it) x i O} (R 2 ), F _+ iF',(12

where - r') is either P or ' and (iF) is either i or .Thus the integrand of the first integral

in equation (101) has only a weak O(R- 1) singularity at it = F and, hence, the first integral

converges.

4.5 Forcing Function

In the matrix equation ZmIm = Vm, the right side, Vm, contains the effect of the mth Fourier

mode of the incident field. Vm is a column vector given by [vi v2 ... VN]T, where N = 4Na+2N,

is the system size. The elements of Vm correspond to the right sides of equations (35)-(37). The

right side of equation (35) is zero, which causes the first 2Na elements of Vm to identically vanish.

Likewise, the right side of equation (37) is zero, causing the last 2N, elements of Vm to vanish.

Only the elements of Vm which correspond to the testing of equation (36) do not identically vanish;

these are elements i = 2Na + 1 through i = 4 Na. The effect of the incident field is manifested via

the "physical optics" current density Jo(Fit) = 2i x Iinc(rt), t E a.
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We assume that the system excitation is caused by a uniform plane wave having a propaga-

tion unit vector k, as shown in Figure 16. Without loss of generality, we restrict k to lie in the

x

k = 11x _L

Figure 16 Parallel (II) and perpendicular (1) polarized incident plane waves.

xz-plane, which we will call the plane of incidence. Then we define the unit vector 6_L to be per-

pendicular to the plane of incidence and the unit vector 61, to be parallel to the plane of incidence.

Both 6-L and 61l are perpendicular to k, and satisfy the relation = x 6-L. Defining 0 as the

angle between i and -k, we find

k=-sin0 - i cos 0 (103a)

= Sr (103b)

611= -k cos 0 + i sin 0 (103c)

We assume that the electric field vector 9"' of the incident plane wave has unit amplitude

and zero phase at the origin, and is either completely parallel to the plane of incidence (II polariza-

tion) or completely perpendicular to the plane of incidence (I polarization):

gincwl(F) e~ko(x'sin O+z'cos) (104)
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where 6 for parallel polarization and 6 = 6j for perpendicular polarization. Then the

incident magnetic field Hinc= Y0 k x 1 in can be written as

H'inc(r 't) c 0 e3ko(x' sinO+z'cosO) (105)

where 6 = 6j for parallel polarization and 6 = -61, for perpendicular polarization. The "physical

optics" current density J 0 (V') = 2i x Iinc(Fi), z' = 0, is given by

_X for 11 Pol
jo(F.)= 2 Yo e3kop'sin0cos 0' - (106)

cosO for IPol

where p' = V/x' 2 + y,2 and 0' = axctan(y'/x').

To find vi, 2 Na + 1 < i < 4Na, we calculate the inner product of j 0 and corresponding

testing functionn'5', (t/'):

3koZo -o -f ,vi 2 P ,n'(107)
- 3k 0 Z0  jr io t) (i) do,,

2 L 6n

where 1 < n' < Na. The testing function ^n, (V) was introduced in Section 4.3; we repeat it

here for convenience.

. ,, e3mo' Tn,(e') , (108a)
7ran'Tn W) ) p i,

, r, Tn, (e') 4, (108b)

Since the testing functions that contribute to V are defined only for i' E a, the arc-length variable

eV is equivalent to the polar radial variable p(V'), and we can write 1' = i cos 0 ' + sin 0 ' and

= -k sin 0/ + k- cos 0/. Expressing the inner product as an integral in polar coordinates, we have

(J ,44) = f f(', k') g(O, 0') de' do' (109a)
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where

f.(',.¢') -2 Y e3ko' sin 0 cos 0' Tn ' (f ,) e-3m¢' (109b)

- cos$' for '=7and IIPol

g(0J sin 0' for 7 = 7 and Pol (109c)

cos 0 sin 0' for "= and -L Pol

cos 0 cos 0' for I = and -L Pol

Using basic trigonometric identities and the relation Jn (z) = L-! e3z Cos cos (no) do, where

J,, is the Bessel function of the first kind of order n, we can write the inner product as

(S0 0,) -2 7r Yo ] T.,(f') fm(f') dt' (lI0a)

where

3 g$-)(e') for' =' (andliIPol
,(+) (for = -- and Pol

fm(e') = (1 lOb)
(cosogm) (V) for '=jTand -L Pol

-3 cos 0 g(-)(f') for '7==¢and I Pol

g21) v ) = m { J-l (kof'sin0) ± Jm+j (koR'sin0)} (ll0c)

We note that g(+ )  g(+) and g = H

4.6 Symmetry

Up to this point, we have been working with the matrix equation Zm Im Vm where

m = 0, +1,... -M. It so happens that we need only explicitly solve the matrix equation for m =

0,1,... M. The solution vector Im for negative m can be found with no additional computation

by exploiting the symmetry between Zm Im = Vm and Z-m I-m = V-r. We may symbolically
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write the matrix equation Zm Im = Vm as

/Zll, 11,'o Zm 2  
Z 1 2 O fZ' Z' 1 3 '  A

( 
(AM) 

(.1)M l / IN2,0 ZM0 Z3 Zm ]0 A ] B m  0(V11
neqan11Z21,, th Zb oc sm ZM2', Z3, e f Z 2rresonin t.

(Zmm 01 v J ,
3 Zm \ m2-,'um ' €  f (0

In equation (111), the block submatrix Zm' € contains the elements of Zm" corresponding to f-

directed basis functions and q-directed testing functions; the other block submatrices are defined

analogously. The block subvector A' contains the expansion coefficients of equation (46) for £-

directed basis functions; the other subvectors of Im are defined analogously. The block subvector

VmI contains the result of testing equation (36) with e-directed testing functions; VZO is defined

analogously.

Each submatrix of Zm is either odd or even with respect to the Fourier index m. By exam-

ining the formulations in Sections 4.4.1-4.4.8, we find that

-( E (( ))( 0
Equation (112) repeats equation (111) except that each submatrix of Zm in equation (111) has been

replaced with an "E" if it is even with respect to m, an "0" if it is odd with respect to m, and an

"0" if it is identically zero. From section 4.5 we see that Vm4 = Vm and Vm = -Vm for parallel

polarization, while V.1 = -Vm and Vm = Vm for perpendicular polarization. From this we
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may draw the following conclusions regarding the subvectors of I,,:

At = :TA m AO = AOm
B' = ±Bm BO = TBm (113)

Ce =Ce CO TCm

where the top sign is taken for parallel polarization and the bottom sign is taken for perpendicular

polarization. Exploiting the relations of equation (113), we may then re-write equations (46)-(48)

to sum over only non-negative Fourier indices:

M Na JA' , f
lM(e, V ) ,. Em Z p1T) Amn g(q ) 1:+ Am f(q ) } (114a)

m=0 n=1l

m=0 n= M
M Na+N -1Tn Cn()4Cn()'

j~v,)-- ,EM Tn)f~m9(Oi+Cmnf() I(1 14c)
m=0 n=Na P

where 0 < q < 27r, 0 < f < tNo for M and ji, eNa < t < fNa+N, for J,, and

f(0) = I sin(m) (115a)

g(O) = cos(mq) (115b)

1 form=0
Em = (115c)

2 form:A.
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V Numerical and Experimental Results

A computer program was written to implement the method of moments solution outlined in Chap-

ter IV for the BOR OCRED scattering problem. For simplicity, the program was written only for

OCRED geometries in which the cavity volume is unfilled. As noted previously, when the cavity

volume is unfilled, only the electric current density on the aperture (J,) and the electric current

density on the cavity surface (Js) need to be found. Once J, and Js are determined, the program

calculates the monostatic radar cross section for the user-supplied angle of incidence.

To validate the results generated by the program, several physical BOR OCRED models

were fabricated and their radar cross sections measured. The measurements are discussed in the

next section, and the results for each model are discussed in subsequent sections.

5.1 BOR OCRED Geometries

f z Rfz R.tIZ
.£.0 Ra.. Ra ..... Ra

d d

f2

______________ £ 1 _3 12 f2

(a) Spherical OCRED. to = 0, (b) Cylindrical OCRED. to = 0, (c) Conical OCRED. to = 0,
ti =Ra,2=R +Rs(r- a). ii = Ra,f 2 = R. +d, 3 = ti =Ra,f 2 =Ra+VR.Fd.

2Ra + d. There are two cylindri-
cal OCREDs, deep and shallow.

Figure 17 Generating arcs for the four BOR OCRED geometries investigated in this dissertation.
The cavity volume D is carved out by rotating the generating arc about the z-axis. The dashed
portion forms the aperture a while the solid portion forms the cavity surface S.

Figure 17 shows the generating arcs for the four BOR OCRED geometries. Each BOR

OCRED geometry is formed by revolving the generating arc about the z-axis. The portion of the
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generating arc on the p-axis generates the OCRED aperture a, while the portion below the p-axis

generates the cavity surface S. The ground plane (the z = 0 plane less the aperture a) is implied.

Each generating arc shown in Figure 17 can be mathematically defined in terms of the arc

length parameter f, which measures the distance along the generating arc, starting from the origin.

We formally define each generating arc mathematically as follows.

Spherical OCRED. The generating arc for the spherical BOR OCRED is shown in Fig-

ure 17(a). The equations defining the generating arc are

g, 0 <.e < Ra

pM =(116)
{Rsin(-R'+ a) Ra<f <Ra,+ R,(7r -a)IRs

zg 0 ,O  0 < i < R, (117)

Rcs - - R~cosa, Ra,<e Ra+R,(7r-a) (17

where R, = 7/8 inches = 0.022225 meters is the radius of the spherical cavity, Ra = 5/8 inches =

0.015875 meters is the radius of the aperture, and a = arcsin(Ra/Rs) ;.t 45.60. The domain of

p(i) and z(e) is 0 < t < Ra + Rs(7r - a).

Cylindrical OCREDs. The generating arc for the generic cylindrical BOR OCRED is shown

in Figure 17(b). Two cylindrical BOR OCREDs are considered in this research, a shallow one and

a deep one. The equations defining the generating arc are

f, 0 < < R,

PMg = Ra, Ra: f_ < R, + d (118)

2Ra + d - E, Ra+d<f <2Ra+d

0, 0 < t< R,,

z)= Ra-i, R a <_f<Ra+d (119)

-d, a + d < 2Ra + d
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where Ra = 5/8 inches = 0.015875 meters is the radius of the aperture, and d is the depth of the

cylindrical cavity. For the deep cylindrical OCRED, d = 3 inches = 0.0762 meters, while for the

shallow cylindrical OCRED, d = 1.5 inches = 0.0381 meters. The domain of p(i) and z(e) is

O < t < 2Ra + d.

Conical OCRED. The generating arc for the conical BOR OCRED is shown in Figure 17(c).

The equations defining the generating arc are

0 <et < Ra

) - Ra (120)

0 1 /- <t< ,Ra
z(t) t -_ _ VI F2a+(121)d ,Ra <t< R+ a/ a+ad

{Id Ra

where Ra = 1 inch = 0.0254 meters is the radius of the aperture, and d = 1.75 inches = 0.04445

meters is the depth of the conical cavity. The domain of p(t) and z(e) is 0 < t < Ra + VR/ + d2 .

5.2 Measurements

A physical model of each BOR OCRED geometry described in Section 5.1 was created for

the purpose of measuring its RCS at various frequencies, polarizations, and aspects. Each BOR

OCRED model was machined out of a solid block of aluminum and mounted in a square, 1/16 inch

thick aluminum plate. The models are shown in Figure 18. While the conductivity of aluminum

is not infinite, it is sufficiently high to model the ideal perfectly conducting nature of the OCRED

cavity surface and ground plane.

Measurement Process. Each OCRED model was then mounted in a test fixture, as shown in

Figure 19. A metallic adapter was used to transition from the 7-inch square OCRED model to the

30-inch diameter hole in the test fixture. Metallized tape was used to ensure electrical continuity

between the adapter and the OCRED model, and between the adapter and the test fixture. The

test fixture had a large, flat surface which was metallized to simulate an infinite conducting ground

plane. and was specially shaped to minimize its monostatic radar cross section.
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(a) Spherical OCRED model. (b) Deep Cylindrical OCRED model.

(c) Conical OCRED model. (d) Shallow Cylindrical OCRED model.

Figure 18 OCRED models.

The RCS of each OCRED model was measured in Wright Laboratory's Advanced Compact

Range. Figure 20 shows the test fixture, with OCRED model installed, mounted on the target sup-

port pylon. The RCS of the OCRED model is measured using a coherent background subtraction

technique [33]. This technique consists of measuring the far-zone scattered electric field under

four separate configurations of the compact range. In the first configuration, the scattered electric

field of the test fixture with the BOR OCRED model installed is measured (EOCRED+TF); in the

second configuration, the scattered electric field of the test fixture with the OCRED aperture re-

placed with a conductor is measured (ETF); in the third configuration, the scattered electric field

of a metal sphere is measured (ESPhere); and in the fourth configuration, the scattered electric field
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Figure 19 The test fixture with an OCRED model installed. The OCRED model is mounted in
an adapter having a 30-inch diameter, which is in turn mounted in the test fixture. Metallic tape is
used at the junctions to ensure electrical continuity.

Figure 20 The test fixture mounted on the support pylon in the Advanced Compact Range.
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Figure 21 The adapter with one of the OCRED models installed. The other three models are
shown in the foreground.

of the empty chamber is measured (EEmpty Chamber). Then the RCS of the OCRED is computed as

EOCRED+TF - E TF 2

O'OCRED E--- ESphere - EEmpty Chamber O'Sphere (122)

where OSphere is the calculated RCS of the conducting sphere. The quantities in equation (122)

are implicit functions of aspect angle, polarization, and frequency. The Advanced Compact Range

measures these quantities to within 0.25 dB of their true values over the frequency range of 2-18

GHz. Neglecting the presence of noise in the receiver, this measurement technique is exact pro-

vided the OCRED and the test fixture do not interact, and its accuracy degrades as such interactions

become more significant. The nature of this degradation is as follows.

Figure 22 illustrates how the background subtraction process works. ETF and EOCRED+TF

are the complex quantities (scattered electric fields) directly measured in the compact range, and

their difference is EOCRED. We would really like to measure E O C RED + ETF, so that we could

find the true value EOCRED = (EOCRED + ETF) - ETF. EOCRED+TF differs from EOCRED +

ETF by an amount Einteraction, which is caused by the interactions between the test fixture and
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Figure 22 Complex (phasor) representation of the scattering from the OCRED model and the
test fixture. ETF is the scattered electric field from the test fixture; EOCRED is the scattered electric
field from the OCRED model; E ° C RED+TF is the scattered electric field from the test fixture with
the OCRED model installed; Einteraction is the scattered electric field from the interactions between
the test fixture and the OCRED model; and EOCRED is the difference between ETF and EOCRED+TF.

the OCRED model. It is generally not possible to directly measure the amplitude or phase of

Einteraction. However, if Einteraction is small relative to EOCRED + ETF, then EOCRED + ETF

EOCRED+TF and tOCRED ; EOCRED. Generally, Einteraction is largest near grazing incidence for

parallel polarization.

A problem that can cause errors in the measurement of EOCRED occurs when ETF is very

much larger than EOCRED. In this case, the calculation of _kOCRED = EOCRED+TF - ETF becomes

numerically sensitive, such that small uncertainties in measurement can produce large uncertainties

in tOCRED. Figure 23 shows the bounds on the uncertainty in calculating tOCRED = EOCRED+TF _

ETF as a function of the relative magnitude of EOCRED and ETF. We see that even though EOCRED

and ETF are measured to be within 0.25 dB of their true values, an uncertainty of 1.0 dB in tOCRED

requires ETF to be at least 3 dB below EOCRED. This situation is encountered at near-normal

incidence when scattering from the flat portion of the test fixture is very large.

5.2.1 The Spherical OCRED. The first OCRED model to be considered is spherical in

shape. Its generating arc is shown in Figure 17(a) and described in Section 5.1. Because the spher-

ical OCRED bears a strong resemblance to a spherical cavity, we expect the frequency response of
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Figure 23 Uncertainty in estimating AOCRED by EOCRED+TF - ETF. Uncertainty of EOCRED+TF

and ETF is 0.25 dB.

the RCS of the spherical OCRED to exhibit singular behavior near the resonant frequencies of a

spherical cavity of the same radius. Indeed, we can think of the spherical OCRED as a spherical

cavity with an aperture that serves to reduce the Q (quality factor) of the cavity. Using a classical

separation of variables approach, the lowest resonant frequencies of a spherical cavity having a

0.875 inch radius can be determined [21, page 271]. These frequencies, and their corresponding

modes, are shown in Table 1. (The triply subscripted modes, e.g. TMpqr, are defined by the rth zero

of the spherical Bessel function (TE) or its derivative (TM) of order q, along with the associated

Legendre function PP.)

Table 1 Lowest resonant frequencies of a perfectly conducting spherical cavity with radius of 7/8
inch. Each resonant frequency is associated with multiple modes, each associated with a particular
value of p, which is allowed to vary from 0 to the value of the second index.

Modes TMp]1 rMp21  TEpa 1Th4p 31

Resonant Frequency [GHz] 5.89 8.31 9.65 10.7

The measured RCS of the spherical OCRED model is plotted in Figure 24. The RCS is

plotted versus frequencies ranging from 2 to 18 GHz, for 0 =30', 450, and 60' off normal and for

parallel and perpendicular polarizations. Several features are evident. First, there is a pronounced

null in the RCS near 6 GHz at all angles and polarizations. This null is likely associated with the

resonant frequency of the TMpjl mode of the spherical cavity (see Table 1). The null is shifted

about 5% due to the effects of the aperture. (If the aperture were smaller, that is if a in Figure 17(a)

were less than 450, then we would expect the null to be shifted back toward the TMplj resonant
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Figure 24 The measured RCS of the spherical OCRED model as a function of frequency.

frequency since the Q of the cavity would be higher). Second, at frequencies above 7 GHz, the RCS

at different angles/polarizations appears to be uncorrelated. This behavior is indicative of complex

interactions among the higher-order cavity modes which are excited differently with respect to

angle and polarization. Third, at frequencies below 5 GHz, the RCS increases nearly monotonically

for all angles/polarizations. In fact, it increases proportional to the square of the electrical area of

the aperture. For example, if the frequency increases by a factor of 2, then the electrical area of

the aperture quadruples and the the OCRED RCS increases by 20 log 4 = 12 dB. Indeed, this

behavior agrees with Rayleigh scattering [33] in which RCS is proportional to the fourth power of

the frequency.

From these observations, we conclude that the spherical OCRED RCS falls into one of three

categories, depending on the frequency relative to the lowest resonant frequency fo of the cor-

responding spherical cavity. When the frequency is significantly below f O then the OCRED
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Table 2 Lowest cutoff frequencies of a perfectly conducting cylindrical waveguide with radius
of 5/8 inch.

Modes TE ITMO1I TE21 TM 11

Cutoff Frequency [GHz] 5.54 7.23 9.19 11.5

behaves as a Rayleigh scatterer. When the frequency is near fro, the RCS exhibits a deep null that

is nearly independent of angle and polarization. When the frequency is significantly above fro,

multiple cavity modes are excited in the OCRED and they coherently combine to create an RCS

that does not follow an easily predictable pattern.

5.2.2 The Deep Cylindrical OCRED. The second OCRED model to be considered is

cylindrical in shape. Its generating arc is shown in Figure 17(b) and described in Section 5.1. For

the deep cylindrical cavity, the depth is d = 3.0 inches = 0.0762 meters. Because the cylindrical

OCRED bears a strong resemblance to a cylindrical waveguide, we expect the frequency response

of the RCS of the cylindrical OCRED to exhibit singular behavior near the cutoff frequencies of

a cylindrical waveguide of the same radius. Using a classical separation of variables approach,

the lowest cutoff frequencies of a cylindrical waveguide having a 0.625 inch radius can be de-

termined [21]. These frequencies, and their corresponding modes, are shown in Table 2. The

measured RCS of the deep cylindrical OCRED model is plotted in Figure 25. The RCS is plot-

ted versus frequencies ranging from 2 to 18 GHz, for 0 =30, 450, and 600 off normal and for

parallel and perpendicular polarizations. Several features are evident. First, there are pronounced

nulls in the RCS near 5.9 and 6.9 GHz at all angles and polarizations. These nulls are associated

with the group velocities of the lowest-order mode of the equivalent cylindrical waveguide (see

Table 2), and will be discussed in more detail in Section 5.3.1. Second, at frequencies well above 8

GHz, the RCS at different angles/polarizations appears to be uncorrelated. This behavior is indica-

tive of complex coherent interference among the higher-order waveguide modes which are excited

differently with respect to angle and polarization. Third, at frequencies below 5 GHz, the RCS in-

creases nearly monotonically for all angles/polarizations, again displaying the Rayleigh scattering

behavior seen with the spherical OCRED.

From these observations, we conclude that the deep cylindrical OCRED RCS falls into one

of three categories, depending on the frequency relative to the lowest cutoff frequency fco of the
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Figure 25 The measured RCS of the deep cylindrical OCRED model as a function of frequency.

corresponding cylindrical waveguide. When the frequency is significantly below fco, the OCRED

behaves as a Rayleigh scatterer. When the frequency is near fo, the RCS exhibits deep nulls near

the cutoff frequencies of the lowest-order cylindrical waveguide modes. These nulls are nearly

independent of angle and polarization. When the frequency is significantly above fco, multiple

waveguide modes propagate in the OCRED and coherently combine to create an RCS that does

not follow an easily predictable pattern.

5.2.3 The Conical OCRED. The third OCRED model to be considered is conical in

shape. Its generating arc is shown in Figure 17(c) and described in Section 5.1. The measured

RCS of the shallow cylindrical OCRED model is plotted in Figure 26. The RCS is plotted ver-

sus frequencies ranging from 2 to 18 GHz, for 0 =300, 450 , and 60' off normal and for parallel

and perpendicular polarizations. Unlike the previous OCRED geometries, the RCS of the conical
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Figure 26 The measured RCS of the conical OCRED model as a function of frequency.

OCRED does not have any pronounced nulls. In the parallel polarization, the RCS of the con-

ical OCRED is remarkably flat, staying within 5 dB of -22 dBsm over nearly all the 2-18 GHz

bandwidth. In the perpendicular polarization, the RCS for ( =450 and 0 =60 off normal appear

smooth and well correlated, while the RCS for 0 =30' exhibits a null near 10 GHz. This null is

likely caused by the destructive interference between the scattering from the near and far edges of

the aperture.

5.2.4 The Shallow Cylindrical OCRED. The fourth OCRED model to be considered is

cylindrical in shape. This OCRED model is the same as the second one, discussed in Section 5.2.2,

except the depth is changed to d = 1.5 inches = 0.0381 meters. Like the deep cylindrical OCRED,

we expect the frequency response of the RCS of the shallow cylindrical OCRED to exhibit singular
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behavior near the cutoff frequencies of a cylindrical waveguide of the same radius. These cutoff

frequencies are shown in Table 2.

-20 9.45." '' .
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The measured RCS of the shallow cylindrical OCRED model is plotted in Figure 27. The

RCS is plotted versus frequencies ranging from 2 to 18 GHz, for 0 =300, 450, and 600 off normal

and for parallel and perpendicular polarizations. We see the similar features as those for the deep

cylindrical OCRED, except that the null at approximately 5.9 GHz is absent. It will become clear

in Section 5.3.3 why this null is not present, and we shall further learn that the location of the null

is a function of cylindrical cavity depth d.
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5.3 Calculations - RCS

The computer program implementing the numerical algorithm described in Chapter IV was

run on the four BOR OCRED geometries described in Section 5.1. Since the algorithm is a

frequency-domain one, each computer run generated data for a single frequency, so generating

RCS versus frequency plots like those shown in Section 5.2 is impractical. Instead, calculations

for each geometry were made at several judiciously chosen frequencies, and the results compared

to measurements. In all cases, the moment method solution is calculated using 20 segments per

free-space wavelength.

5.3.1 The Spherical OCRED. The spherical OCRED poses a special challenge in that

its generating arc is curved, but the computer program was written to handle only piecewise linear

generating arcs. Thus, the curved part of the generating arc has been replaced by a piecewise

linear approximation, as shown in Figure 28. Through numerical experiments, it was found that an

eleven-segment piecewise linear approximation was adequate for the highest frequency tested (10

GHz), though more segments might be necessary at higher frequencies.

z

0~ P

'S

/r/

Figure 28 A piecewise linear approximation to the generating arc for the spherical OCRED.
As shown, the curved part of the generating arc is approximated by three line segments. In the
calculations, eleven line segments are used.

Figure 29 shows the resultant calculated RCS for the spherical OCRED as a function of

angle from normal at three discrete frequencies. The corresponding measured RCS values are

plotted as well, and good agreement is observed between calculations and measurements at each

frequency. The three frequencies chosen are 4, 6.25, and 10 GHz. 4 GHz was chosen because the
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spherical OCRED behaves as a Rayleigh scatterer at that frequency. 6.25 GHz was chosen because

measurements show that the RCS of the spherical OCRED has a null near there (see Figure 24),

which implies that the spherical OCRED is near resonance at 6.25 GHz. This is a challenging

frequency for the calculations. 10 GHz was chosen to test the accuracy of the moment method

program with an electrically large problem.

As can be seen in Figure 29, the measured and calculated values agree quite well at each

frequency and polarization. Measured data only exists for angles from 0 =30' to 0 =90 from nor-

mal. Measured data was not taken at normal or near-normal aspects. (The background-subtraction

measurement technique significantly degrades there due to the excessively large physical optics

return from the test fixture.) The RCS at 4 GHz is nearly constant with 0 in parallel polarization,

but falls off rapidly with 0 in perpendicular polarization, a direct result of the cos 0 factors appear-

ing in the incident field, equation (110), and the radiation, equation (39). At 6.25 GHz, the deep

null in perpendicular polarization is evident, although it is interesting how narrow in 0 it is. The

calculations show that the RCS at the two polarizations converge as 0 --+ 0, as expected. The mea-

sured data is significantly corrupted near grazing aspects due to significant interactions between the

OCRED and the edges of the test fixture. As expected, this corruption is most evident in parallel

polarization and decreases as frequency increases.

Figures 30 and 31 show the measured and calculated RCS of the spherical OCRED as a

function of frequency and angle for parallel and perpendicular polarizations, respectively. The fre-

quency varies from 5.9 to 6.5 GHz while the angle varies from 300 to 85' from normal. The deep

null in parallel polarization is clearly evident (see Figure 24), and we note that the location of the

null in angle varies with frequency. The measured data exhibits contamination near grazing inci-

dence, especially in parallel polarization, as discussed in Section 5.2. This contamination "ripples"

with frequency, which is to be expected since the electrical distance between the OCRED model

and the edge of the test fixture varies with frequency.

5.3.2 The Deep Cylindrical OCRED. The generating arc (see Figure 17(b)) for the

deep cylindrical OCRED is piecewise linear, and thus can be modeled exactly by the computer

program. Figure 32 shows the resultant calculated RCS for the deep cylindrical OCRED as a

function of angle from normal at four discrete frequencies. The corresponding measured RCS
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Figure 29 The RCS of the spherical OCRED as a function of aspect angle 9 at three discrete
frequencies.

values are plotted as well, and good agreement is observed between calculations and measurements

at each frequency. The four frequencies chosen are 4, 5.9, 6.9 and 10 GHz. 4 GHz was chosen

because the deep cylindrical OCRED behaves as a Rayleigh scatterer at that frequency. 5.9 and

6.9 GHz were chosen because measurements show that the RCS of the deep cylindrical OCRED

has nulls near those frequencies (see Figure 25), which implies that the deep cylindrical OCRED

is near resonance there. These are challenging frequencies for the calculations since the RCS is

very sensitive to the frequency of the incident field. 10 GHz was chosen to test the accuracy of the

moment method program with an electrically large problem in which multiple waveguide modes

are expected to propagate in the cavity.

As can be seen in Figure 32, the measured and calculated values agree quite well at each

frequency and polarization. Measured data only exists for angles from 9 =300 to 9 =900 from

normal. Measured data was not taken at normal or near-normal aspects. At 4 GHz, the RCS is

nearly flat for parallel polarization and decays as cos2 9 for perpendicular polarization. At 5.9
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Figure 30 RCS versus angle from normal and frequency for the spherical OCRED for parallel

polarization. Measured RCS plotted on left, calculated RCS plotted on right.
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Figure 31 RCS versus angle from normal and frequency for the spherical OCRED for perpen-

dicular polarization. Measured RCS plotted on left, calculated RCS plotted on right.

GHz, both polarizations decay more rapidly with 9 than at 4 GHz. At 6.9 GHz, a null appears at

9 = 550 in parallel polarization. At 10 GHz, the roll-off of RCS with 9 is nearly monotonic. As

was the case for the spherical OCRED, the measured data is significantly corrupted near grazing

aspects due to significant interactions between the cavity and the edges of the test fixture, and this

corruption is most evident in parallel polarization and decreases as frequency increases.

5.3.3 The Conical OCRED. The generating arc for the conical OCRED (see Fig-

ure 17(c)) is piecewise linear, and thus can be modeled exactly by the computer program. Fig-

ure 33 shows the resultant calculated RCS for the conical OCRED as a function of angle from

normal at two discrete frequencies. The corresponding measured RCS values are plotted as well,

and good agreement is observed between calculations and measurements at each frequency. The

two frequencies chosen are 4 and 10 GHz. 4 GHz was chosen to maintain consistency with the
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Figure 32 The RCS of the deep cylindrical OCRED as a function of aspect angle 0 at four
discrete frequencies.

other OCRED geometries. 10 GHz was chosen to test the accuracy of the moment method program

with an electrically large problem in which significant field penetration into the cavity is expected.

As can be seen in Figure 33, the measured and calculated values agree quite well at each

frequency and polarization. Measured data only exists for angles from 0 =30' to 0 =90' from

normal. Measured data was not taken at normal or near-normal aspects. At 4 GHz, the cos2 0

dependence is evident at perpendicular polarization. The RCS at normal incidence is higher than

for the spherical or deep cylindrical OCREDs due to the larger aperture of the conical OCRED. At

10 GHz, there is a fairly pronounced null at 32.5' in perpendicular polarization, indicating possible

destructive coherent scattering from the rim and wall of the cavity. As with previous geometries,

the measured data is significantly corrupted near grazing aspects due to significant interactions

between the OCRED and the edges of the test fixture, and this corruption is most evident in parallel

polarization and decreases as frequency increases.
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Figure 33 The RCS of the conical OCRED as a function of aspect angle 0 at two discrete fre-
quencies.

5.3.4 The Shallow Cylindrical OCRED. The generating arc for the shallow cylindrical

OCRED (see Figure 17(b)) is piecewise linear, and thus can be modeled exactly by the computer

program. Figure 34 shows the resultant calculated RCS for the shallow cylindrical OCRED as

a function of angle from normal at four discrete frequencies. The corresponding measured RCS

values are plotted as well, and good agreement is observed between calculations and measurements

at each frequency. The four frequencies chosen are 4, 5.9, 6.9 and 10 GHz. 4 GHz was chosen

because the shallow cylindrical OCRED behaves as a Rayleigh scatterer at that frequency. 6.9

GHz was chosen because measurements show that the RCS of the shallow cylindrical OCRED has

a null near that frequency (see Figure 27), which implies that the shallow cylindrical OCRED is

near resonance there. This is a challenging frequency for the calculations. 5.9 GHz was chosen as

a comparison with the deep cylindrical OCRED. As noted previously, the deep cylindrical OCRED

RCS has a null at 5.9 GHz that is curiously absent in the shallow cylindrical OCRED's RCS. 10

GHz was chosen to test the accuracy of the moment method program with an electrically large

problem.

As can be seen in Figure 34, the measured and calculated values agree quite well at each

frequency and polarization. Measured data only exists for angles from 0 =30' to 0 =90 from

normal. Measured data was not taken at normal or near-normal aspects. At 4 GHz, the RCS of the

shallow cylindrical OCRED is almost identical to that of the deep cylindrical OCRED, suggesting

the RCS is independent of cavity depth at that frequency. At 5.9 GHz, the RCS has nearly the same

shape as for the deep cylindrical OCRED but is nearly 12 dB higher. At 6.9 GHz, the RCS has
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Figure 34 The RCS of the shallow cylindrical OCRED as a function of aspect angle 0 at four
discrete frequencies.

nulls in both polarizations, but at slightly different angles. At 10 GHz, the RCS rolls off gently in

parallel polarization, and has a null in perpendicular polarization.

5.4 Calculations - Other Attributes

In Section 5.3, the ability of the numerical algorithm to accurately model the radar cross sec-

tion of several BOR OCRED geometries was validated against measurements. However, the RCS

is a derived quantity inasmuch as it depends on the electric current density on the cavity surface.

Therefore it is prudent to evaluate the quality of the (approximate) electric current density, which is

the direct product of the numerical algorithm. Since we have no way to measure the electric current

density, we will instead check that the numerical algorithm produces electric current densities J,-

and Js that satisfy our a priori knowledge of those quantities. We will also evaluate the numerical
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stability of the moment method matrices used to find j, and Js, and investigate which Fourier

modes must be included in the solution to produce accurate RCS data.

5.4.1 The Electric Current Density. The electric current density J(F), F E a U S,

will exhibit certain properties. As noted in Chapter III, to satisfy Meixner's edge condition at the

aperture rim, the 1 component of j(F ) must be continuous and bounded as f crosses from or to S,

and the component of i(f) must be discontinuous and unbounded as F crosses from a to S. At

points away from the rim, we expect j(F ) to be a smooth function of position.

The electric current density near the center of the aperture is a continuous function of position

there, and so can be expressed in a Taylor series about the center as

j(F) = J()+O (IFI)(13
(123)

= RJ.(O) + kJy(O) + o(IFl) for IFl -+0

However, on the portion of the aperture associated with the portion of the generating arc between

to and R1, the current density is expressed as (see equation (47))

M

J(rt) :E [B .1e i + B Ora 1 ] e3m0

m=-M

R [M {[B I cos -Bm 1 sin 1] e3m¢ (124)
m=-M

k [B' 1 sin 0 - Be cos€] elmO} forlI<el

Equating equations (123) and (124), we find that BMl and BO 1 vanish for Iml 5 1 and that

Bt =jBm form = -1 (125a)

B = -IBOm form = 1 (125b)

These relations are consistent with the symmetry relations of Section 4.6, equation (113). Another

way of stating this is that only the first-order Fourier modes do not identically vanish at i = 0.

Using an identical analysis as above near the bottom of the OCRED cavity, we find that only the

first-order Fourier modes of 1 do not identically vanish at f = L.
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In the rest of this section, we examine the electric current density as a function of the arc

length variable f. We define

J = [2(r , S). e-3m db (126)

jo [V) 27r e-3-0 dob (127)

to be the mth Fourier components of the i-directed and 4-directed electric current density J, re-

spectively.
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Figure 35 The electric current density plotted as a function of arc length t for the spherical
OCRED: f = 4 GHz, 0 = 30'. The aperture rim corresponds to t = 1.59 cm.

The Spherical OCRED. At a frequency of 4 GHz, the spherical OCRED behaves as a

Rayleigh scatterer, as can be seen from Figure 24. A characteristic of a Rayleigh scatterer is that its
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Figure 36 The electric current density plotted as a function of arc length £ for the spherical
OCRED: f = 4 GHz, 0 = 600, and m = 1. The aperture rim corresponds to f = 1.59 cm.

scattering cross section varies sharply with respect to its electrical size, but not with respect to its

shape. This implies that electromagnetic fields inside the cavity are small. This is further suggested

by the fact that the frequency is below the lowest resonant frequency of the corresponding closed

spherical cavity (see Table 1). Figure 35 shows the magnitude of the electric current density on

OD for 0 = 300 and Fourier modes m=0, 1, 2, and 3. This shows that all Fourier components of

the electric current density are largest near the rim and rapidly decay for i > EN.. As expected,

only the m = 1 Fourier component has a non-zero value at f = 0. Figure 36 shows the magnitude

and phase of Jt and JO for 0 = 600 and m = 1. Here we see that Jj is bounded and continuous

near f = RN,. In contrast, the magnitude of JO peaks strongly near t = fN while the phase of JO

exhibits a 1800 phase shift there. This behavior is entirely consistent with the edge condition at the

aperture rim.

At 6.25 GHz, the frequency is above the resonant frequency of the lowest-order mode of

the corresponding closed spherical cavity. Furthermore, as shown in Figure 24, the spherical OC-

RED no longer behaves as a Rayleigh scatterer at 6.25 GHz. This suggests that the fields should

significantly penetrate the cavity interior. Figure 37 shows the magnitude of the electric current

density components for 0 = 30' and m=0, 1, 2, and 3. The m=0 and m=l components show that

there is indeed significant field penetration into the OCRED interior. However, the m=2 and m=3

(and higher) components do not significantly penetrate the cavity interior, indicating that only the

low-order Fourier modes are excited at this frequency. We also see that the necessary conditions
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Figure 37 The electric current density plotted as a function of arc length f for the spherical
OCRED: f = 6.25 GHz, 0 = 300. The aperture rim corresponds to f = 1.59 cm.

are satisfied at f = 0, f = tNa, and £ = L. That is, only the m=1 Fourier component is non-zero at

the aperture center and cavity bottom, and the Jj and JO components satisfy the edge condition at

the aperture rim. Figure 38 shows the magnitude and phase of Jj and JO for 0 = 60' and m = 1.

The magnitude and phase of Jf are continuous and bounded at £ = tN, while the magnitude of

JO is unbounded and the phase of JO is discontinuous there. Also, note the null and 1800 phase

shift of Jj at £ P, 3.6 cm; this is suggestive of a standing wave pattern caused by the interference

between two spherical cavity modes. This phenomenon is especially likely because there are mul-

tiple modes that resonate at fro, as shown in Table 1. Another interesting feature is the "scalloping"

evident in the plot of JO. This is caused by the eleven-segment piecewise linear approximation to

the curved portion of the spherical OCRED generating arc.
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Figure 38 The electric current density plotted as a function of arc length t for the spherical
OCRED: f = 6.25 GHz, 0 = 600, and m = 1. The aperture rim corresponds to f = 1.59 cm.

At 10 GHz, the frequency is above the resonant frequency of the three lowest-order modes

of the corresponding closed spherical cavity (see Table 1). We expect to see a more complex field

distribution in the spherical OCRED than was evident at 6.25 GHz when only one cavity mode

was active. Figure 39 shows the magnitude of the electric current density components for 0 = 300

and m=0, 1, 2, and 3. The m=O, 1, and 2 Fourier components penetrate the cavity interior, but the

m=3 component does not. As was the case at 6.25 GHz, all the necessary conditions are satisfied

at e = 0, 1 = fNa, and f = L. Figure 40 shows the magnitude and phase of Jj and JO for 0 = 600

and m = 1. The magnitude and phase of J are continuous and bounded at f = eNa. We expect JO

to be unbounded at f = £Na, and, indeed, for perpendicular polarization it is, but not for parallel

polarization. However, as shown in Figure 41, JO is unbounded in magnitude and its phase shifts

1800 at £ = £Na for m=2. Thus we see that the total JO obeys the edge condition at £ = EN

although each of its individual Fourier components may not. As was the case at 6.25 GHz, we see

the distinctive "scalloping" effect of JO due to the eleven segment piecewise linear approximation

to the curved portion of the spherical OCRED generating arc.

The Deep Cylindrical OCRED. At a frequency of 4 GHz, the deep cylindrical OC-

RED behaves as a Rayleigh scatterer, as can be seen from Figure 25. Table 2 shows that the deep

cylindrical OCRED will not support a propagating waveguide mode at 4 GHz, and we expect to see

little field penetration into the cavity interior. Figure 42 shows the magnitude of the electric of the
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Figure 39 The electric current density plotted as a function of arc length i for the spherical
OCRED: f = 10 GHz, 0 = 30' . The aperture rim corresponds to f = 1.59 cm.

electric current density components for 0 = 300 and m=0, 1, 2, and 3. This figure indicates that all

of the Fourier components of Je and JO decay for f!> fN. Additionally, all Fourier components

obey the edge condition at the aperture rim, and only the m=l Fourier component does not vanish

at f = 0 and £ = L.

At a frequency of 5.9 GHz, the deep cylindrical OCRED will support the TEu cylindrical

waveguide mode and we expect to see significant field penetration into the cavity interior. Figure 44

shows the magnitude of the electric current density for 0 = 300 and m=0, 1, 2, and 3. Each

Fourier component decays for t > fNa, except for the m=1 component which shows considerable

penetration into the cavity interior. The electric current density for m=l is evidently caused by

an interference pattern set up by a downward propagating TEi1 wave and its upward propagating
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Figure 40 The electric current density plotted as a function of arc length t for the spherical
OCRED: f = 10 GHz, 0 = 600, and m = 1. The aperture rim corresponds to f = 1.59 cm.

Table 3 Longitudinal wavelengths the four lowest-order modes of a perfectly conducting cylin-
drical waveguide with radius of 5/8 inch at 5.9, 6.9, and 10 GHz. A real value indicates a propa-
gating mode; an imaginary value indicates an evanescent mode.

[I A, [cm]
[Mode [ f=5.9 GHz f=6.9 GHz If=10 GHz

TE1 14.7 7.3 3.6
TM01  37.2 313.8 4.3
TE 21  34.3 14.9 7.6
TM l1  33.0 33 .2  35.2

reflection. At 5.9 GHz, the "longitudinal wavelength" A, of the TEIl mode is given by A, =

27r/k 2 - (1.841/Ra) 2 = 14.7 cm where 1.841 is the first zero of J [21, p. 205]. Table 3 shows

the "longitudinal wavelength" for the three lowest-order waveguide modes at 5.9, 6.9 and 10 GHz.

This value is very nearly twice the depth of the deep cylindrical OCRED, or, in other words,

the OCRED is nearly one-half A, at 5.9 GHz. This explains the deep null in Figure 25 there.

Figure 45 shows the magnitude and phase of the electric current density for 0 = 600 and m=l.

A similar standing-wave pattem is evident, except that the TEII mode is excited more strongly at

0 = 30' . Additionally, the J1 and JO components are nearly ±90' out of phase for f > iNa, with

Jj experiencing a 1800 phase shift at its null near = 5.5 cm.

At 6.9 GHz, the deep cylindrical OCRED still propagates only the TEil cylindrical waveg-

uide mode, so we expect to see a field distribution in the cavity interior similar to that at 5.9 GHz.
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Figure 41 The electric current density plotted as a function of arc length i for the spherical
OCRED: f = 10 GHz, 0 = 600, and m = 2. The aperture rim corresponds to R = 1.59 cm.

Figure 46 shows the magnitude of the electric current density for 9 = 30' and m=O, 1, 2, and

3. These components look very much like those shown in Figure 44 for 5.9 GHz. One obvious

difference, however, is the "double hump" pattern of the m=1 Fourier component instead of the

"single hump" pattern present at 5.9 GHz. The longitudinal wavelength of the TEI1 mode at 6.9

GHz is A, = 7.3 cm, nearly half the longitudinal wavelength at 5.9 GHz. This indicates that the

deep cylindrical OCRED is nearly one longitudinal wavelength deep at 6.9 GHz, causing the deep

null in Figure 25 there. Figure 47 shows the magnitude and phase of the electric current density

for 0 = 600 and m=l. The same "double hump" standing-wave pattern is evident. The Jj and Jo

components are nearly ±90' out of phase for g > g.z, and both experience a 180' phase shift at

their nulls (f ;3.8 and 7.4 cm for Jj, f -5.6 cm for JO).

At 10 GHz, the deep cylindrical cavity will support three propagating modes (see Table 2).

Figure 48 shows the magnitude of the electric current density for 9 = 30' and m=O, 1, 2, and 3. At

this frequency, the three lowest-order waveguide modes (TEl I, TMOI, and TE 21) propagate, each

with a different longitudinal wavelength A,, as given in Table 3. Using this information, we see that

the m = 0 Fourier component contains the TM01 mode, the m = 1 Fourier component contains

the TEnI mode, and the m = 2 Fourier component contains the TE21 mode. This is evident from

the fact that the null-to-null distance in the standing wave patterns correlates to one-half A, of

these modes. Figure 49 shows the magnitude and phase of the electric current density for 0 = 600,

m = 1. This figure shows that Jt under parallel polarization does not have a nicely formed lobing
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Figure 42 The electric current density plotted as a function of arc length £ for the deep cylindri-
cal OCRED: f = 4 GHz, 0 = 300. The aperture rim corresponds to f = 1.59 cm.

structure near the top of the OCRED sidewall (fN, < e < eN + 1), as it did at 0 = 300. This can

be attributed to the TM1 waveguide mode, which is weakly evanescent at 10 GHz. (Table 2 shows

that the TMll mode cuts on at 11.5 GHz.) Comparing Figures 48 and 49 shows that the TM 1

mode is excited more strongly at 0 = 600 than at 0 = 300, probably due to the different incident

field.

The Conical OCRED. At a frequency of 4 GHz, the conical OCRED is in transition

between the Rayleigh and resonance regimes. This implies that the electromagnetic field does not

penetrate as strongly into the cavity as at higher frequencies. Figure 50 shows the magnitude of

the electric current density for 0 = 300, m=0-3. As expected, none of the Fourier components
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Figure 43 The electric current density plotted as a function of arc length f for the deep cylin-
drical OCRED: f = 4 GHz, 0 = 600, and m = 1. The aperture rim corresponds to f = 1.59
cm.

penetrates strongly into the cavity interior, and all of them obey the edge condition at f = ENa.

Furthermore, only the m = 1 Fourier component does not vanish at f = 0.

At 10 GHz, the conical OCRED does not behave as a Rayleigh scatterer, and we expect to

see significant field penetration into the interior of the cavity. Figure 52 shows the magnitude of the

electric current density for 0 = 30', m=0-3. In contrast to 4 GHz, there is considerable penetration

into the cavity interior, especially for the lowest three Fourier components. Figure 53 shows the

magnitude and phase of the electric current density for 0 = 60', m = 1. Notice the fairly clean

null and corresponding 1800 phase shifts at £ ; 4.1 cm and f ; 5.2 cm. This is evidence of

a well-formed interference pattern, though only for J under perpendicular polarization and JO

under parallel polarization. The satisfaction of equation (125) at i = 0 is quite visible in Figure 53.

The Shallow Cylindrical OCRED. At a frequency of 4 GHz, the shallow cylindrical

OCRED behaves as a Rayleigh scatterer, as can be seen from Figure 27. Table 2 shows that the

shallow cylindrical OCRED will not support a propagating waveguide mode at 4 GHz, and we

expect to see little field penetration into the cavity interior. Figure 54 shows the magnitude of the

electric current density components for 0 = 300 and m=0, 1, 2, and 3. This figure indicates that all

of the Fourier components of Jj and JO decay for £ > £Na. Additionally, all Fourier components

obey the edge condition at the aperture rim, and only the m=1 Fourier component does not vanish

at i = 0 and f = L.
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Figure 44 The electric current density plotted as a function of arc length i for the deep cylindri-
cal OCRED: f = 5.9 GHz, 0 = 300. The aperture rim corresponds to f = 1.59 cm.

At a frequency of 5.9 GHz, the shallow cylindrical OCRED will support the TE 1I cylindrical

waveguide mode and we expect to see significant field penetration into the cavity interior. Figure 55

shows the magnitude of the electric current density for 0 = 300 and m=O, 1, 2, and 3. Each

Fourier component decays for f > fN, except for the m=1 component which shows considerable

penetration into the cavity interior. The electric current density for m=1 is evidently caused by

an interference pattern set up by a downward propagating TEl1 wave and its upward propagating

reflection. Table 3 shows the "longitudinal wavelength" ) for the three lowest-order waveguide

modes at 5.9 GHz, from which we see that A, = 14.7 cm for the TE mode. This value is very

nearly four times the depth of the shallow cylindrical OCRED, or, in other words, the OCRED is

nearly one-quarter A, at 5.9 GHz, rather than one-half A, as was the case for the deep cylindrical
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Figure 45 The electric current density plotted as a function of arc length t for the deep cylin-
drical OCRED: f = 5.9 GHz, 0 = 600, and m = 1. The aperture rim corresponds to t = 1.59
cm.

OCRED. This explains the absence of a null in Figure 27 there. Figure 56 shows the magnitude

and phase of the electric current density for 0 = 600 and m=l. The same standing-wave pattern is

evident. Additionally, the Jj and Jo components are nearly +900 out of phase for t > EN., with

Jj experiencing a 1800 phase shift at its null near £ = 5.5 cm.

At 6.9 GHz, the shallow cylindrical OCRED still propagates only the TE1 l cylindrical

waveguide mode, so we expect to see a field distribution in the cavity interior similar to that at

5.9 GHz. Figure 57 shows the magnitude of the electric current density for 0 = 300 and m=0,

1, 2, and 3. These components look very much like those shown in Figure 55 for 5.9 GHz. One

obvious difference, however, is the "single hump" pattern of the m=1 Fourier component instead

of the "half hump" pattern present at 5.9 GHz. The longitudinal wavelength of the TEII mode

at 6.9 GHz is A, = 7.3 cm, nearly half the longitudinal wavelength at 5.9 GHz. This indicates

that the shallow cylindrical OCRED is nearly one-half longitudinal wavelength deep at 6.9 GHz,

causing the deep null in Figure 27 there. Figure 58 shows the magnitude and phase of the electric

current density for 0 = 600 and m=l. The same "single hump" standing-wave pattern is evident.

The J1 and Jo components are nearly +900 out of phase for f > ENa, and Jj experiences a 1800

phase shift at its null at f P3.8 cm.

At 10 GHz, the shallow cylindrical cavity will support three propagating modes (see Table 2).

Figure 59 shows the magnitude of the electric current density for 0 = 300 and m--0, 1, 2, and 3. At
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Figure 46 The electric current density plotted as a function of arc length f for the deep cylindri-
cal OCRED: f = 6.9 GHz, 0 = 30' . The aperture rim corresponds to f = 1.59 cm.

this frequency, the three lowest-order waveguide modes (TE]I, TMOI, and TE21 ) propagate, each

with a different longitudinal wavelength A, as given in Table 3. Using this information, we see that

the m = 0 Fourier component contains the TM01 mode, the m = 1 Fourier component contains

the TE11 mode, and the m = 2 Fourier component contains the TE21 mode. Figure 60 shows the

magnitude and phase of the electric current density for 0 = 60', m = 1. This figure shows that

Je under parallel polarization does not have a nicely formed lobing structure near the top of the

OCRED sidewall (fN0 < f < Na ± 1), as it did at 0 = 30' . This can be attributed to the TMI

waveguide mode, which is weakly evanescent at 10 GHz. Comparing Figures 59 and 60 shows that

the TM 1I mode is excited more strongly at 9 = 60' than at 0 = 30', probably due to the different

incident field.
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Figure 49 The electric current density plotted as a function of arc length f for the deep cylin-
drical OCRED: f 10 GHz, 0 =60', and m =1. The aperture rim corresponds to f 1.59
cm.
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Figure 50 The electric current density plotted as a function of arc length t for the conical OC-
RED: f = 4 GHz, 0 = 300. The aperture rim corresponds to f = 2.54 cm.
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Figure 51 The electric current density plotted as a function of arc length f for the conical OC-
RED: f = 4 GHz, 0 = 600, and m = 1. The aperture rim corresponds to £ = 2.54 cm.
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Figure 52 The electric current density plotted as a function of arc length f for the conical OC-
RED: f = 10 GHz, 0 = 30'. The aperture rim corresponds to f = 2.54 cm.
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Figure 53 The electric current density plotted as a function of arc length f for the conical OC-
RED: f =10 GHz, 0 =600, and m =1. The aperture rim corresponds to R 2.54 cm.
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Figure 54 The electric current density plotted as a function of arc length f for the shallow cylin-
drical OCRED: f = 4 GHz, 0 = 30'. The aperture rim corresponds to t = 1.59 cm.
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Figure 55 The electric current density plotted as a function of arc length t for the shallow cylin-
drical OCRED: f = 5.9 GHz, 0 = 30'. The aperture rim corresponds to t = 1.59 cm.
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Figure 56 The electric current density plotted as a function of arc length t for the shallow cylin-
drical OCRED: f = 5.9 GHz, 0 = 600, and m = 1. The aperture rim corresponds to t = 1.59
cm.
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Figure 57 The electric current density plotted as a function of arc length f for the shallow cylin-
drical OCRED: f = 6.9 GHz, 0 = 30'. The aperture rim corresponds to f = 1.59 cm.
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Figure 58 The electric current density plotted as a function of arc length £ for the shallow cylin-

drical OCRED: f = 6.9 GHz, 0 = 60, and m = 1. The aperture rim corresponds to £ = 1.59

cm.
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Figure 59 The electric current density plotted as a function of arc length £for the shallow cylin-
drical OCRED: f =10 GHz, 0 = 300. The aperture rim corresponds to f 1.59 cm.
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Figure 60 The electric current density plotted as a function of arc length f for the shallow cylin-
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cm.
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5.4.2 The Condition of the Moment Method Matrix. The effectiveness of the moment

method solution technique requires the generalized impedance matrix to be well-conditioned. If

the matrix is well-conditioned, then small changes in the forcing vector cause small changes in

the solution vector, and the linear transformation defined by the matrix is stable. If the matrix

is poorly conditioned, then small changes in the forcing vector may produce large changes in the

solution vector, and the linear transformation defined by the matrix is unstable. The condition of the

moment method matrix is inherently limited by the integral equations to which the moment method

is applied, and a well-conditioned moment method matrix is an indication of a well-conditioned

set of integral equations.

The condition of an N x N matrix is measured by the so-called "condition number" K. It is

a measure of the sensitivity of the linear system ZI = V in the following sense. If the elements of

Z and V are in error by some small amount, then the resulting solution I will also be in error, such

that

(Z + 6Z) (I + 61) = (V + ) (128)

The error of the solution I is bounded by [18, page 79]

__11 < K _____ + 0(6) (129)11T 111 IV 1I i ll/

The condition number n is thus dependent on the matrix norm employed. If the 2-norm is chosen,

then n is given by [18]

UN =(130)
o"1

where a, is the smallest singular value of the matrix and ON is the largest. (Recall that the singular

values of a complex matrix are always real, non-negative, and up rp+1.) A perfectly conditioned

matrix (e.g., the identity matrix) has a condition number K = 1, while a condition number much

greater than unity reflects a poorly conditioned matrix.

Tables 4-7 show the condition numbers of the moment method matrix used to calculate the

electric current density J(f) for each combination of OCRED geometry, frequency, and Fourier
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Fourier Index, m
Freq [GHz] N 0 1 2 3 4 5 6 7

4 62 111 327 131 131

6.25 86 172 368 228 201 199 197

10 114 219 522 368 408 294 278 273 271

Table 4 Condition number n of N x N moment method matrix Zm for the spherical OCRED.

Fourier Index, m
Freq [GHz] N 0 1 2 3 4 5 6 7

4 74 66 191 72 72
5.9 100 92 241 106 104 103
6.9 116 110 262 129 125 124 124
10 186 159 354 198 187 178 176 175 175

Table 5 Condition number K of N x N moment method matrix Zm for the deep cylindrical
OCRED.

index. It should be stressed that these condition numbers relate to using the moment method as

applied to equations (36) and (37) to find .,. and is since the cavities considered in this chapter are

unfilled. Several trends are immediately clear. First, the condition number K generally increases

with frequency, the dependence being nearly linear. Second, the condition number corresponding

to m = 1 exceeds the condition number for any other Fourier mode, except under special circum-

stances that will be described later in this section. Third, as the Fourier index m increases past

unity, the condition number asymptotically approaches a finite limit. Most importantly, however,

in all cases the condition number is quite benign in the sense that it does not vary greatly with

geometry, frequency, or Fourier mode. In fact the largest observed r was 632 while the smallest

was 66, a variation of less than a factor of ten.

Figure 61 shows the condition number n for the spherical OCRED as a function of frequency.

Data for the first four Fourier modes (m = 0 - 3) are shown. The m = 0 Fourier mode shows

a peak in its condition number at approximately 6.01 GHz while the condition numbers for the

other Fourier modes are nearly constant across the band. The peak in the m = 0 Fourier mode can

be explained as follows. The lowest-order mode of the corresponding spherical cavity resonates

at 5.89 GHz (See Table 1). The presence of the aperture in the spherical OCRED causes two

things to happen: the resonant frequency becomes complex due to the radiation losses through the

aperture, and the volume of the cavity is reduced by a function of the aperture angle a and the cavity
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Freq Fourier Index, m
[GHz] N 0 1 2 3 4 5 6 7 8 9 10 11

4 54 150 244 109 108 108 107
10 116 377 598 263 261 267 263 257 254 253 253 253 253

Table 6 Condition number n of N x N moment method matrix Zm for the conical OCRED.

Fourier Index, m
Freq [GHz] N 0 1 2 3 4 5 6 7

4 54 69 166 75 75
5.9 70 92 273 106 104 103
6.9 80 110 249 129 125 124 124
10 108 161 353 180 190 181 178 178 177

Table 7 Condition number iK of N x N moment method matrix Zm for the shallow cylindrical
OCRED.

radius R 8 (see Figure 17(a)). In effect, we consider the spherical OCRED to be a perturbation of

a spherical cavity. The volume of the corresponding spherical cavity is Vcavity = 4irR3, while

the volume of the interior of the spherical OCRED is VOCRED = (Q + cos a - 1 COS3 3) irR a.

With a P 45.60, we find VOCRED P 0.939. A spherical cavity having a volume equal to VOCRED
Veavity

would have a radius of approximately equal to 0.979R 8, and thus would resonate at approximately

5.89/0.979=6.015 GHz. From this we see that the condition number of the m = 0 Fourier mode

peaks at a frequency corresponding to the resonant frequency of a spherical cavity having the same

volume as the spherical OCRED interior. We expect this relation to be valid when the aperture

angle a is small enough such that the fields inside the OCRED are similar to the fields inside the

corresponding spherical cavity. As the aperture angle a is reduced toward zero, we would expect

the peak in Figure 61 to become higher and narrower, and to move toward 5.89 GHz.

5.4.3 Relative Importance of Fourier Modes. The accuracy of the RCS produced by the

numerical algorithm is a function of the number of Fourier modes included in the solution. It is not

known a priori how many Fourier modes must be included to achieve a desired level of accuracy,

but a rule-of-thumb [41,44] is to include all Fourier modes up to the M th , where M = F2kpmax1,

k is the wavenumber, Pmax is the maximum distance between a point on the generating arc and the

axis of rotation and [x] is the least integer greater than x.
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Figure 61 Condition number for the spherical OCRED as a function of frequency. ii for the
m = 0 Fourier mode is plotted as K-; , for the m = 1 Fourier mode is plotted as ---- ; pK for the

m = 2 Fourier mode is plotted as r...; K for the m = 3 Fourier mode is plotted as .........

We may assess the relative importance of each Fourier mode in the following manner. In-

stead of looking at the contribution of the m th Fourier mode to the total RCS, we will look at its

contribution to the total electric current density j(iF). The importance metric we will employ will

be the integral of the mth Fourier component of I J(?) 1, integrated along the generating arc. This

can be expressed directly in terms of the expansion coefficients as

Na Na+Ns -1

E Z 2e +- E I C 2 (131)
n=1 n=Na

Na Na+Ns-1

E Z fl~ 2 + EZ I n1 2 (132)
n=1 n= Na

We will normalize this metric by the contribution from the dominant Fourier mode, such that

max (133)

M (134)max {itm

Figures 62-65 show the normalized metric Im plotted versus Fourier index m for each of the four

BOR OCRED geometries. The aspect angle is held constant at 0 = 450, and data is shown for both

and _L polarizations. Using this metric, we see that the contribution of the M th Fourier mode
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is several orders of magnitude below the contribution of the dominant mode. Furthermore, for m

greater than approximately M/2, the integrated current magnitude decays exponentially with m,

at a rate of 7-8 dB per unit increase in m. Surprisingly, this rate of decay is nearly independent of

geometry and of frequency, suggesting that this may be an intrinsic property of all BOR OCREDs.
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VI. Conclusions

This dissertation documents an investigation into the development of an integral equation-based

solution for the determination of the electromagnetic scattering from a cavity-backed aperture em-

bedded in an infinite, perfectly conducting ground plane. The cavity may be filled with a homo-

geneous, isotropic, linear material. Such a geometry is of interest in designing an effective RCS

enhancement device to be installed on airborne vehicles while not compromising aerodynamic per-

formance properties. A substantial body of work exists in the open literature documenting research

into the scattering properties of open cavities, but none incorporates the integral equation technique

developed here. The coupled set of integral equations developed here provides an accurate predic-

tion for the RCS of the open cavity, and the results support the assertion that the integral equations

possess a unique solution at all real, positive frequencies.

In the previous chapters, a comprehensive theoretical, numerical, and experimental treat-

ment is presented for the aforementioned scattering problem. Fundamental theorems governing

the behavior of the electromagnetic fields in the cavity interior and upper half-space are introduced

and proved. These theorems are used to generate a coupled set of three integral equations in which

the unknown quantities are the tangential magnetic field on the cavity surface and the tangential

electric and magnetic fields on the aperture. It is shown that, for the case of unfilled cavities, the

formulation degenerates into a coupled set of two integral equations involving just the tangential

magnetic fields. The system excitation is provided by the incident tangential magnetic field on

the aperture, which may be radiated by near-field or far-field sources. Integral representations are

given for the total fields in the cavity interior, and for the scattered fields in the upper half-space.

A numerical algorithm, based on the method of moments, is presented to find an approximate

solution to the set of integral equations for the important case of axisymmetric (body of revolution)

cavities. The unknown tangential fields are expanded using piecewise-linear functions and complex

exponentials (Fourier modes). Methods to treat the numerical computation of the resultant integrals

are given, as well as a novel transformation to reduce the order of the singularity of a dyadic kernel.

Various aspects of the resultant approximate solution are discussed. The far-field scattered fields

are compared to measurements of several full-scale physical models, and excellent agreement is

observed. The approximate tangential fields on the cavity surface and aperture are shown to be
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well-behaved and, in particular, to satisfy the edge condition at the aperture rim. The stability of

the numerical solution is discussed.

This research represents the first use of this integral equation-based technique to the open

cavity problem. The success of the numerical algorithm suggests several areas in which future

research might concentrate. First, the numerical algorithm could easily be extended to handle

non-axisymmetric cavities. This would necessitate using a different set of basis functions; the

so-called "Rao-Wilton-Glisson" [54] basis functions might prove useful here. Such an extension

would enable the analysis of several interesting cavity shapes, such as rectangular ones. Second,

the numerical algorithm could be verified with dielectric-filled cavities. Such verification should

incorporate a measurement program with several types of material fillings and cavity shapes. A

two-dimensional version should be verified before a three-dimensional version is attempted. Third,

an optimization scheme could be developed to find the "best" open cavity shape for a given set of

scattering requirements. This would provide an alternative to the costly "design-fabricate-measure"

iterative loop that would currently have to be employed today. Fourth, the integral equations could

be generalized to handle radiation from an open cavity using an excitation source inside, or on the

surface of, the cavity. This would allow the technique to be used for antenna analysis as well as

scattering analysis. Finally, the integral equation technique could be used as part of a larger, hybrid

system to handle installation issues in an airborne application. For instance, if an open cavity were

embedded in the upper surface of an aircraft wing, the integral equation technique might be used

for the cavity and physical optics might be used for the rest of the airframe.
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Appendix A. Proof of the Fundamental Theorems

In this appendix, we prove the fundamental theorems presented in Chapter III. The proofs employ

the classical methods of infinitesimal vector calculus. For Theorem 1, we also show that (F, f'1)

satisfies a dyadic form of the reduced wave equation in the distributional sense.

Proof of Theorem I

In this section, we prove Theorem 1 using the classical methods of infinitesimal vector cal-

culus. We recognize that F(F, F') can be expressed as the sum of three components, namely,

3

r(w, i:") = E ,( i( t, it,)(3a

P(, F') = -jk VG(k; F, i') x 6 for e = 1,2,3 (135b)

where 61 = k, e2 = k, and e3 = i. Now we introduce Green's Second Identity for mixed

vector-dyadic fields [61],

fJ [ i. [X (V×X1)+(V×-)× ] ds (136)

where V is a volumetric region with regular boundary OV, fi is the outward unit normal vector

on V, and A = X(Ft) and B = B(F) are arbitrary vector and dyadic functions, respectively,

twice-differentiable in V. In particular, we choose A(f) to satisfy the homogeneous wave equa-

tion (2) in V, and let B(4) F (f, f') with f and i' fixed. It can be shown that F(f, F') also

satisfies equation (2) for F F. With these choices, it is easy to see that the volume integral in

equation (136) vanishes when F' V V, where V is the closure of V. Thus

fo i x ) + ( (X K) X (=)1 ds =0 forF' VV (137)

If F' E V, we exclude from V a small volume, V, containing F' in its interior. We choose

V to be a sphere of radius J centered at F', as shown in Figure 66. We apply equation (136) to the
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Figure 66 A volume V and volume V6. V6 is spherical with radius 6, centered at F' E V.

region V - V. We see that the volume integral in equation (136) vanishes and we have

faii [A x (V x F) + (Vx A) x =P]1 ds=

fL , [x (v r) ds

-f i .[(Vx )x =] ds, for'EV (138)

Now we are in the position to evaluate the right side of equation (138) in the limit as 6 -+ 0. To do

so, we consider the two integrals on the right side of equation (138) separately.

The First Integral Consider the first integral on the right side of equation (138),

Ii(6) =- ii fi. [() x (V x =(it,F))] ds (139)

We establish a local spherical coordinate system (o, V, W) centered at i'. Without loss of generality,

we let f = 3, so that the "north pole" of the local spherical coordinate system is aligned with 63 =

2, as shown in Figure 67. The spherical unit vectors are: = sin 9 cos WR + sin V0 sin Wk5r + cos ?9i,
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= cos oss ok + cos V sino - sin9i, and q = -sin Wk + cos Wk. Using the identity [47]

6. (b x = -c) . ( x =) = (- x ) and noting that fi = -0 on DV, we can write

[ilA(F)] xl× (,' ds (140)

Since A(F) satisfies the homogeneous wave equation in the neighborhood of f', we have that A()

is infinitely differentiable at F: = f' and thus can be expanded in a Taylor series about i' in the

neighborhood of f'. Indeed, expressing A(f) in terms of its components in Cartesian coordinates

as A(F) = A.(x, y, z)k + Ay (x, y, z) k + A.(x, y, z) , we can write

0 x A(F) = 0 [Ax cos V cos W + Ay cos V sin W - Az sin 9]

+ 2[Ax cos W - Ay sin W]

ODx Dyz+ o C os 2  + 9y cos V sin V cos W sin w

+DOz ODx+ z c sz 0Cos O + A COO sin? 0cos Wo sin Wo
+ 6 09 '9Xu O~

ACos sin V sin 2 W + -AY c Os2 9 sin W (141)

sin V cos W - sin sin2 Vin 0 - cos V sin

[ - -- sin V cos Wsin Wo + axsin V sin 2 W + .9Ax "1idsi
o-Asin cos Wsin Cos 9 os W'

L Dy DzJ

+ 0(j2)

where the field components and their derivatives are evaluated at F: = f'. Expressed in the same

coordinates, the curl of r (F, f) is

V x T (FFi) = -k4 e-3ke {2(3k0+ 1)coso0+ [(jko)2+ 3ko+ 1] sin VO IJiz (142)

We apply these last two equations to the integral in equation (140). Noting that the differential

surface ds = 62 sin 70 d'0 do, we find

I,(b) =k - [(3kS) 2 + 3H + 1 x 9 sin3 V d9, + 0(j) (143)
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Global Origin

Local Origin ,/
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Figure 67 Local spherical coordinate system centered at r'

Letting J -+ 0, we have

ykvim ,(6) '- -X-V, x A f(fi) 22 (144)

6-+0 3

The Second Integral. Consider the second integral on the right side of equation (138),

1 2 (6) f [(V x (F)) xP (,') ds (145)

Using the same identities as used in the previous section, 12(b) can be written as

2(Vx A() xr ( ) ] ds (146)

where x ( i((t, r[) is

=(3) e-3ko
S1 3(f, Fit') = jk (jko + 1) sin (147)

40p2
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as expressed in the local spherical coordinates. Expanding V x A(F) in a Taylor series about

r = f', 12(6) becomes

12(6) = 3k sin' 19 d29 [V' x A(F') , + 0(6) (148)

Letting -+ 0, we have

n 12(6) V x A (F'). ii (149)
6-40 3

By taking the limit as 1/3 becomes an infinitesimally small sphere (that is, 6 -+ 0), and incorporat-

ing equations (144) and (149) into equation (138), we can write

faoVf, '[A ( F 3r + V x  )  (  ds = kV' xA(F',.- ii for f' EV (150)

Similarly, equation (150) holds for F and Fr , with ii replaced by ja and kk, respectively.

Hence we may write

foVii'[Ax(Vx ))+ (Vx A) x (=] ds=jkV'x A(').6et forF'EV

(151)

where f = 1, 2, 3. By equation (135a), it follows from equation (151) that

fLvt. [Ax (VxP)+(VxA) xr] ds=3kV'xA(F') forF'EV (152)

Combining equations (137) and (152), we have

S +V3kV' x A(i:') for F'cV (153)
ft. (Ak [Vx ] +[Vx A] x )ds = forF53

JB0 forf it'VV

and the proof of Theorem 1 is complete. Notice that Theorem 1 yields no information for the case

in which F' E OV.
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A distributional differential equation satisfied by V. In this section, we show that r satisfies

the distributional differential equation

V x V x r- k2P = -kVJ(F- F') x (154)

First, let Ia(f') be given by

Ia(F') = -jk f [vW(f - F') x 11 dv (155)

Using the identity i. (1b xI) = i x b, the above equation becomes

Ia(F') = - 2 k V X x V6(i - F") dv (156)

Noting VS(F - i") = -V'6(i - i'), using the vector identity Vt x (us) = uV' x i - 9 x V'u,

and noting V' x A(r) = O, we have

Ia(F') = kJV/ X [6 r ( ')X] dv (157)

The curl operates on primed variables, and can be brought in front of the integral sign, giving us

= jkV' x fV (F - t')X dv (158)

Exploiting the sifting property of the delta function, we have

Ia(V') = - k V ' x X(i") for ' E V (159)
0o forF' V

Now, let Ib(r- ') be given by

Ib(') =f k(i) • [V X V X V- k2f] dv (160)
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Noting that A satisfies equation (2),

V x V x A(i) - k(F)= 0 (161)

we have

Ib(W)= [ "( x (VXV X (VxVxA).F] dv (162)

Using equation (136), we have

Ib(') = - fIVfi [AX (Vx F) + (Vx A) x V] ds (163)

and in light of equation (153)

b(t')---- = - 3kV ' x _.(f') for F' E V (164)

0o forF' 0 V

Comparing equations (159) and (164) we see that Ia(F') = Ib(r") for i" aV and, due to the

arbitrary nature of A leads to

V x V x F- k2F = -3kV(9- iF') x (165)

Proof of Theorem 2

In this section, we prove Theorem 2. We will make use of some of the intermediate results

of the first proof of Theorem 1 as presented in Section A. In particular, we will require the vector

function AI(F) and the dyadic function f(f, F,) to satisfy the same requirements as in Section A.

Examination of equations (14a) and (14b) along with equation (135b) reveals that we can

write the auxiliary dyadic functions as

21 , t _- (1)( , r,) 2(2)( , r) (3)(t, i,)

( =M'+ ((2F )(3

+ (1i, ii,) + =)(it, 41) (, i/) (166)
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Let V be regular volumetric region and Vi be its image with respect to the xy-plane. Let V U Vi be

empty; that is, V lies completely on one side of the xy-plane. Then we can consider three cases.

Case 1: f' E V. Applying equation (151) in a straightforward manner to equation (166)

allows us to write

fa V ii{ - X [V x1l] + [VX ] x IPI ds=3kV'xA(f') forf' E V (167)

Case 2: F' E V. Equation (151) does not apply directly to the present case in which

Fj' E V. Replacing z by -z in the development of equation (151), we can derive the related

equation

] 8an [A x (V =(e) + (Vx A) r(eI ds

= 3kV x -(t') • Ata for Fi' E V (168)

where

(OAz OAy ' ( OA OAz\ (Ay OA 1x
-i +--09 z Oaz Ox + ' ax a Oy (169)

Applying equation (168) to equation (166) allows us to write

fafi{XJAx [V x =r] + [V x A] xVI ds = kV x A(Fi')(Rk +Sr i2-) (10(170)

= 3k xV × X(%',')] for Fi' E V

Case 3: i' V V, fi' V V. When neither f nor fi lie in the interior of V, then it is clear from

equations (151), (168), and (166) that the surface integral on the boundary of V vanishes. That is,

I 8v fi'-6Ax [VTx Vl]+-[Vx X xFI} ds=O fori' Vandfj' VV (171)
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Combining these three cases, we can write the single equation,

fL ' { x [Vx1 ]'+[V X.] XV} ds

3kV' x A(i") for r' E V

3k [V x A(i')] for F' E Vi (172)

0 forf ' V and i" 0 Vi

and the proof of Theorem 2 is complete.

Proof of Theorem 3

The proof of Theorem 3 is exactly the same as the proof of Theorem 2 except that r 1 is

replaced by F 2. This leads to

Lavfi-{ Ax [V x V2 ] +[V xA] x V2} cI

r3MV x X(i:) for F' E V
- -3k [V x for F' E Vi (173)

0 forF' V V andi' 1 Vi
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Appendix B. Application of the Fundamental Theorems

In this appendix, we present the results of applying Theorems 1, 2, and 3 to the OCRED geometry.

Each application represents a choice of one from each of the following three sets:

" Theorem 1, Theorem 2, or Theorem 3.

* V is the cavity volume, D, or the upper half space (UHS), z > 0.

* A is the electric or magnetic field.

The table at the bottom of this page provides an index and gives the equation number correspond-

ing to each combination. Significant algebraic manipulations are needed to arrive at the equations

that follow, and will not be given here. The interested reader can verify any equation by exploiting

vector and dyadic identities (all of which can be found in [62]), along with the boundary condi-

tions satisfied by 9 on S and oC, and the boundary conditions satisfied by V, and 172 on a (see

equations (15)-(16)).

Theorem 1, V = D, A = E:

j 2 [X 9>t< V X F(ki, F, r-') dcr - 3klZl j [fli(it)] -F(ki, F, i') ds

k2Zlfi:r)  forF ' E D
{= ZHF)(174)

0 for z' > 0

Table 8 Equation index for application of the fundamental theorems to the OCRED problem.
____ fiTheorem 1 Theorem 2 [Theorem 3I

V = D, A = E (174) (178) (182)
V = D, A = fl (175) (179) (183)

V = UHS, A8 = E l (176) (180) (184)

V = UHS, XS = fis (177) (181) (185)
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Theorem 1, V = D,A = H:

L[ x 9 (i)] - F(k 1 , it1, + 2 Y r ['iX I(F)] V X (kl, , F') ds

[kZ~ Xu [ii)] x( I ft',) -'t  Vo x-(q-i, )

3kjl(r") for F' E D (175)

for z' > 0

Theorem 1, V = UHS, A = E:

j [ x E(F)].- V x IF(ko, F, it') do, - jkZ L cl [ AS (it)] P r(k,, it, F:') do,

0 forV E D
{ Zf ort)D (176)
-k'ZoIl'(i" )  for z' > 0

Theorem 1, V =UHS, A = H:

j [,x] (k,,koo j [ x Ii(F)] .V x F(ko, F)dc

[ko ×u, [i / x f-o, i')'do

[0 for F' D
(177)

1-koE6(ft )  for z' > 0
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Theorem 2, V = D, A = E:

2f [i x E(r)]V x -(kTr) do-kZ j [fix I(t) .]l(kl,fT')do

kl2Zi(F') forF' E D

= k ZJfI(F') for T' E Di (178)

o for f' E Df

Theorem 2, V =D, A = A:

f[i x I-l(f)] .F, i:(kTT) do --+ fs vg) -() x ri (kl,t,i t' ) d8

-kilg,(T') for F' E D

-ki for F' E Di (179)

0 for T' E Df

Theorem 2, V = UHS, A=Es:

f1 2
Z

j [ xE( V x I'(ko, f, t')do= 2 for'e D (180)

[- I forz' > 0
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Theorem 2, V = UHS, A=f:

k02YO (-iti) for i' E D/ [ x Ii(9)]• V x r(ko, F,9") dco = 2 (181)
-LuE k2 29s (,i) for z' > 0

Theorem 3, V = D, A = E:

2 L [2 x fti(9)] -F(k1 , F, i') do, + f [ii x A it)] V2 (k1 , it, i') ds

jklIf(9t') for F' E D

{-kjij(ri') for f' E Di (182)

0 for 9:' E D1

Theorem 3, V =D, A l =:

[i x ,(F)].- =FI, , -l [f x duI(+)] " V X F 2 (kl ,,i') ds

jjklg (:') for i" E D

= - 3 klij(i t') for 9' E Di (183)

0 for '" E Df
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Theorem 3, V = UHS, A =Ek:

'LO f iq vr for F' E D
La l x AS(it)] - =(ko,,Ft,) do,= (184)

JUTC-k 0 f (F') for z' > 0

Theorem 3, V = UHS, A =H':

ful1 x =(k, F, F') do, 2 (185)

2 o ., (t,) for z' > 0
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Appendix C. Regularization of a Singular Integral

When formulating the expressions for the elements of Z2 and Zl',, we must deal with an iterated

surface integral of the form

I= f (F') . fi' x [tB(F). VVG(k;F,F')] ds ds' (186)
1 2

where S and S2 are regular surfaces, K(f') is defined on S1, fi(f) is defined on S2, i' is the unit

normal vector on S at the point defined by F', and fi has a similar relationship with S2 and Ft. The

unit normal vectors vary continuously almost everywhere on their domains. We further suppose

that i'. A(f') = 0 on S1 and that fi . fi(f) = 0 on S2; that is, A and 3 have only tangential

components on their respective domains. The kernel of equation (186) is VVG(k; f, f'), which

can be written as

VVG(k; it, it') = 3 + 3jkR + (jkR)2 ] Aft - (1 + jkR) II -k (187)
47rR 3

where R = IF - FI and R = (i - F') /R. From equation (187) we see that

VVG(k; F, F') - (3RR - I) 1 for F iF' (188)471.R3 frf 18

Let Rmin be the minimum value of R for any F' e S1 and ' E S2. If S and S 2 do not

overlap, then Rmin > 0, VVG(k; f, F') is bounded, and the integral in equation (186) exists and

is uniformly convergent. However, if Rnin is small, then the absolute value of the kernel of equa-

tion (186) will be 0(R -3) when F' is near F, and numerical integration techniques may have poor

convergence properties. If S and S2 overlap, then the integral in equation (186) must be treated

very carefully. We may consider the overlapping case to be the limit of a non-overlapping case

as Rmin -4 0. Wilson [65] establishes the existence of this integral, but its numerical evaluation

is cumbersome and computationally expensive. We now show a method by which equation (186)

may be transformed into a form that is much more amenable to numerical computation.

Let S and S2 be two regular surfaces that do not overlap, as shown in Figure 68. Also, let

A(F') and 13(f) be continuous, differentiable vector functions defined on S and S2, respectively.
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Z S2

Si

x

Figure 68 Geometry used in regularization procedure. Regular surfaces S, and S2 do not over-
lap. F: E S2 and fi is the unit normal on S2 at F. F' eS, and fl' is the unit normal on S, at
iF'.

Because the surface integrals in equation (186) are uniformly convergent, we may write

I =j k1(i:) - fl' x 4d(F') ds' (1 89a)

where

(i(F) L S2f (F) -VVG (k; F, F') ds (I 89b)

Since B (i) is everywhere tangent to S2, then j-3(F) = fi x [ii(iF) x fi] so that

C fi, {I X [il(F) x fi] }.VVG(k; F, F') ds (190)

Using the identity C b) i=.(b x= withii= i,b = (:) xiiandc==VVG(k; F, F'),

equation (190) becomes

=f Li {[f3(i) x i] x VVG(k; i, i')}I ds (191)
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Using another identity, namely V x (6-) = (V x 6) b - x Vb with ii = 3() x fi and

1 = VG(k; r-, '), equation (191) becomes

= S2 fi V x [B_(it) x fi] VG(k; i, F') ds

2fs 2fi V { [ti(it)x fi] VG(k;FF')}ds (192)

We introduce a dyadic form of Stokes' Theorem:

fs fi V x a ds = fa d" a= (193)

where the line integral is traversed in the positive sense with respect to the unit normal vector fi

(i.e., in accordance with the right-hand rule). Applying equation (193) to the second integral in

equation (192), we have

C(i:') = fS f. -V [t(i:) x fl VG(k; i, i') ds

- S5 VG(k; F, F') [3(i) x fi] .d (194)
,S2

The first integral in equation (194) may be simplified by noting that

fi. Vx [B() xfi =-VK.(0 (195)

where "V,'" is the surface divergence operator [62, page 501]. Then equation (194) becomes

(2 = - f . g(i) VG(k; it, F') ds

- .9 VG(k; F, i') [f3() x fi] .d&" (196)
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Combining equation (196) with equation (189a), and noting V'G(k; F, f') = -VG(k; iF, f'), we

obtain

f f L if') - [fi' V'G(k; i,Fi')] V,,. f3(f) ds ds'

+ f */ X~(f'> [fi' x V'G(k; it, it')] [f(it) x fi d6 ds' (197)

or

.I=jfSD(t) V, -f(:) ds+ fa2 D (F) [A(it) x f] 66 (198a)

with

D (F) = jS 1(' X W x VG(k; F, F') ds' (198b)

Using the identity 6.( x 6)b= (6 x ii), equation (1 98b) becomes

D (f) = jS fl'. [VG(k; F:, it') x A(it')]I ds' (199)

Using another vector identity, namely V x (06~) =Vq x 4 + (V x a-) 0 with =G(k; F, F')

and ii = XI(F%) equation (199) becomes

D (i: = js fi'.- V, x [G(k; it, F)()]ds'

- jss fil' V x A (F') G(k; it, F') ds' (200)

Using a vector form of Stokes' Theorem,

JIVW. V x ii(f') da' = fa i(i') -dV (201)
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equation (200) may be written as

D(F) = j G(k; i, it) A(i).d - j fi'. V' x iA(F') G(k; i, F') ds' (202)

The second integral in equation (202) may be simplified by noting that A(V') is everywhere tangent

to S1, so that X(F') = [i' x Ai')] x fi'. Then, incorporating equation (195), equation (202)

becomes

D(iF) = j G(k; , F') A(i') .di' + j G(k; F, f') V. [i'× A(F")] ds' (203)

Finally, we combine equation (203) with equation (198a) to get

I = G (k; i, i') V, B(r) V. [fi' x A(i')] ds ds'

+f f G (k; F, it') V,. (F) A(it') -d6'd
2 81 -(204)

+ f, f Gk F2' V ii, [6 A (it')] [ J(i x ii] -66 ds'

+ fS LJ G (k; F, V') [j-3(it) x ii] -d6 I(it') 661 2

This proves Theorem 5.

If we compare equation (204) with equation (186), we see that the order of the singularity

of the integrand has been reduced from R- 3 to R- 1. This has been accomplished at the cost of

requiring that the vector functions A and 3 have bounded derivatives everywhere on their domains

and evaluating additional integrals on the boundaries of S1 and S2. These additional integrals need

not always be numerically evaluated. They must be considered only if A (it) has a non-vanishing

tangential component on OS1, or if B3(F) x fi has a non-vanishing tangential component on 0S2.

The advantage of equation (204) over equation (186) can be illustrated by the following

numerical example. Let S1 be a 1A-radius disk in the xy-plane, centered at the origin. Let S2 be a

1A-radius disk parallel to S1, centered at (0, 0, 3), 3 > 0. This geometry is shown in Figure 69.
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Z

S2

S1

Figure 69 Geometry for numerical example. S is a lA-radius disk centered at (0, 0, 0). S2 is
a 1A-radius disk centered at (0, 0, 6). Both are parallel to the xy-plane. The vectors are such that
F' E Siand i E S2.

Define A (F') and 13(F) as

X 1 -12p'- 11 e30 (205a)

plI3" -- 1 2p - 11 e3O 3 (205)

with p' = If', p = - 6i, q' = -*sin' + rcosO', 3 = Rcoso + ksino. Since both

A(i ') and (i(f) vanish on the boundaries of their respective domains, only the first integral in

equation (204) survives. The surface divergences are

V . [fi' x "'r) = ,  (206a)

Vf B(i') = - e3 (206b)
P

where the positive sign is taken when p' or p is less than 0.5A and the negative sign is taken other-

wise. A computer program was written to calculate I using the formulation of equation (186) and

of equation (204). Figure 70 shows the results for various values of the separation distance 3 and

the Gauss-Legendre quadrature order N.. With 6 held constant the formulation of equation (186)

converges very slowly as N. increases, and with Ng held constant it diverges as 6 decreases. In
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Figure 70 Magnitude of I for as a function of quadrature order Ng with 6 0.02, and as a
function of 6 with Ng = 30. Equation (186) formulation is plotted as a dashed line; equation (204)
formulation is plotted as a solid line,

contrast, the formulation of equation (204) is quite well-behaved. Thus, equation (204) requires

far fewer computational resources to evaluate than equation (186).
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